Добавить в цитаты Настройки чтения

Страница 7 из 8

Эти многочисленные элементы не только определяют развитие, функционирование и здоровье мозга. Каждый из них динамически влияет на остальные.

Например:

• От мыслей и чувств может зависеть наше физическое восприятие боли. Вот почему стресс из группы «снаружи внутрь» способен усугублять ощущение («сверху вниз») боли («снизу вверх»).

• Социальные контакты непосредственно связаны со здоровьем мозга, вот почему у людей, живущих изолированно, выше риск деменции.

• Физическое здоровье влияет на настроение. Именно поэтому двигательная активность («снизу вверх») регулирует эмоции («сверху вниз») и может использоваться для лечения депрессии.

Как выстроить мозг

Если вы присутствовали на нейрохирургической операции или смотрели ее запись на YouTube, вы могли заметить, что живой человеческий мозг не розовый и не голубой. Он пульсирующий, сиреневато-серый. Самый наружный складчатый слой коры, серое вещество, получило свое название за внешний вид. Оно содержит тело нейронов, их разветвленные отростки, которые называются дендритами, а также клетки других типов – глии. На глубине сантиметра под поверхностью находится белое вещество, состоящее из нервных пучков, соединяющих вместе разные области серого вещества.

Как правило, в каждом полушарии коры головного мозга выделяют четыре доли: лобную, височную, теменную и затылочную. Если не вдаваться в подробности, то у каждого вида – свои задачи. Затылочные доли обрабатывают зрительные образы. Височные отвечают за звуковую информацию, речь и память. В теменные поступают данные от органов чувств, связанные с движением. А лобные доли, которые у людей крупнее и гораздо более развиты, чем у любых других млекопитающих, управляют движениями, языком, абстрактным мышлением и вниманием.

Откуда мы знаем, какая часть мозга чем занимается? Подсказка – в первых строках шедевра Оливера Сакса «Человек, который принял жену за шляпу»: «Дефицит, излюбленное слово неврологов…» Функциональный дефицит, вызванный, например, инсультом или опухолью мозга, дал неврологам первое представление о том, что называется «локализацией функции»[29].

Как рассказывает Сакс, исследовать взаимосвязь мозга и разума начали в 1861 году. Тогда французский невролог Поль Брока обнаружил, что речь неизменно нарушается из-за поражения конкретного участка левой височной доли. Так был открыт путь к составлению карт человеческого мозга. Отдельным его участкам стали приписывать конкретные способности – лингвистические, интеллектуальные, эмоциональные, зрительные и т. д. Во время работы над диссертацией я провела сотни часов, вводя вольфрамовые микроэлектроды на глубину 4 мм в ту часть затылочной коры головного мозга, где, как я точно знала, смогу записать входящий сигнал от одного или другого глаза. Аналогично нейрохирурги используют стимулирующие электроды, чтобы провести тщательное картирование головного мозга, и лишь потом берутся за скальпель. Это помогает не задеть жизненно важные области. Современная фМРТ (функциональная магнитно-резонансная томография) выдает карту мозгового кровообращения, по ней можно судить об активности разных участков и локализации функций.

Конкретная задача или черта никогда не «привязывается» к определенному месту в коре головного мозга на всю жизнь. Не забывайте, что мозг пластичен и меняется в течение жизни. В опытах с вольфрамовыми микроэлектродами мне удалось управлять предпочтением левого или правого глаза для отдельно взятого нейрона, в зависимости от того, какой глаз закрывала повязка. Другие исследователи доказали, что зрительные нейроны можно научить реагировать на звуки, если перенаправить поступающие от уха сигналы. На нейропластичности основана наша способность усваивать и запоминать информацию, а также восстанавливаться после таких поражений головного мозга, как инсульт.

Если копнуть чуть глубже, мы увидим, что специфичность участков мозга поддерживается многообразием. Даже, казалось бы, у простейших структур набор клеток удивительно богат. В сетчатке глаза – десятки видов нервных клеток, в спинном мозге – более сотни типов специализированных нейронов, управляющих мышцами. На ранней стадии развития эмбриона разнообразие достигается благодаря химическим градиентам и сигнальным молекулам. Например, ориентация «голова-хвост» или «право-лево» зависит от того, насколько близко или далеко находится клетка к источнику вещества, которое влияет на включение или выключение генов и тем самым определяет развитие клетки определенного типа.

Разнообразие и точность связей, сформированных многими миллиардами нейронов за время внутриутробного развития, – основа поразительных способностей нашего мозга и разума. Мозга, который позволяет нам любить, чувствовать, существовать в мире, создавать произведения искусства, запускать спутники в космос даже при таких нарушениях, как у пациента Сакса, который «протянул руку, схватил свою жену за голову и… попытался приподнять ее, чтобы надеть на себя»[30].



Рождение новых клеток мозга

От нескольких сотен клеток, свернувшихся в нервную трубку, до 86 миллиардов на редкость разнообразных нейронов в мозге новорожденного – колоссальный рост. С помощью простых вычислений можно определить, что за одну минуту внутриутробного развития появляется от четверти до половины миллиона нейронов. Пролиферация мозга (то есть разрастание ткани за счет деления клеток) сводится к клеткам всего одного типа – стволовым.

Этот термин напоминает о сумасшедших ученых, перспективных средствах для лечения рака и болезни Паркинсона, спорах об этичности использования тканей абортированного человеческого плода. Однако в естественной среде стволовые клетки существуют без всяких драм.

У них два уникальных свойства: бесконечно делиться, создавая многочисленные копии самих себя, и видоизменяться в клетки любого типа, содержащиеся в организме. Нервные стволовые клетки, как понятно из названия, производят клетки всех типов, какие только есть в мозге и нервной системе, в том числе нейроны и глия. Нейроны образуются из стволовых клеток в процессе нейрогенеза, а глия – глиогенеза.

Половина клеток мозга – это глия. Среди них различают три основных подтипа: астроциты, олигодендроциты и микроглия. Сам термин «глия» происходит от древнегреческого слова, означающего «клей»: некогда считалось, что такие клетки предназначены исключительно для того, чтобы скреплять нейроны. Но глия не просто удерживает структуру мозга. Разные виды глии обеспечивают питание нейронам, вычищают токсины во время сна (астроциты), изолируют аксоны нейронов миелином (олигодендроциты, или шванновские клетки периферийной нервной системы) и действуют как внутренняя иммунная система мозга (микроглия). Глиогенез происходит на протяжении всей жизни человека. На снимках головного мозга по изменению объема или плотности белого вещества можно видеть, как увеличивается или сокращается число олигодендроцитов.

Нейрогенез в мозге взрослого человека изучен не так хорошо. Этот процесс у людей среднего возраста был впервые описан в знаковом исследовании о содержании в атмосфере углерода-14. Этот радиоактивный изотоп углерода активно образовывался при ядерных взрывах и попадал в ДНК. В 1955–1963 годах его концентрация в атмосфере выросла из-за надземных ядерных испытаний во время холодной войны. В воздухе углерод-14 вступает в реакцию с кислородом. Образуется углекислый газ – диоксид углерода СО2, который растения поглощают в процессе фотосинтеза. Когда мы едим эти растения или мясо питающихся ими животных, углерод-14 попадает в наши клетки. Те делятся, оставляя в ДНК «пометку о дате» деления. У людей, живших в годы холодной войны, все вновь появившиеся нейроны в мозге оказались «помеченными» углеродом-14. Выяснив это, нейробиологи определили, что в гиппокампе каждого человека средних лет ежедневно появляется 700 новых нейронов, маркированных углеродом-14. Гиппокамп (от др.– греч. «морской конек») – центр обучения и памяти мозга, формой он и правда напоминает эту забавную рыбку[31].

29

Sacks O. The man who mistook his wife for a hat. London: Picador Classic, 1985.

30

Сакс О. «Человек, который принял жену за шляпу» и другие истории из врачебной практики / Пер. с англ. Григория Хасина и Юлии Численко. СПб.: Science Press, 2006. – Прим. ред.

31

Eriksson P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998; 4 (11): 1313–1317.