Страница 19 из 34
Схема эксперимента Эрнеста Марсдена: А—В – источник альфа-частиц, R—R – золотая фольга, Р – свинцовая пластина, S – сцинтилляционный экран из сульфида цинка, М – микроскоп
К своему удивлению, он немедленно обнаружил то, что искал. «Я хорошо помню, как рассказал об этом результате Резерфорду, – писал он, – которого я встретил на лестнице, ведущей в его комнату, и с каким восторгом сообщил ему об этом»[204].
Несколько недель спустя Гейгер и Марсден по указанию Резерфорда подготовили результаты опыта к публикации. «С учетом высокой скорости и массы α-частицы, – писали они в заключение, – кажется удивительным, что, как показывает этот эксперимент, некоторые из α-частиц могут быть повернуты в слое золота толщиной 6 × 10–5 [т. е. 0,00006] см на угол 90° и даже более. Для получения аналогичного эффекта в магнитном поле потребовалось бы поле огромной напряженности в 109 абсолютных единиц»[205]. Тем временем Резерфорд продолжал размышлять о том, что может означать такое рассеяние.
Размышлял он об этом, занимаясь в то же время другой работой, больше года. В самом начале он интуитивно понял, что означает этот эксперимент, но затем это понимание пропало[206]. Даже после того, как он обнародовал свои потрясающие выводы, ему не хватало уверенности настаивать на них. Одна из причин такой его нерешительности могла заключаться в том, что это открытие противоречило моделям атома, которые сформулировали ранее Дж. Дж. Томсон и лорд Кельвин. Кроме того, в его интерпретации открытия Марсдена возникали и некоторые физические противоречия, которые тоже нужно было объяснить.
Резерфорд был искренне поражен результатами Марсдена. «Это было поистине самое невероятное событие, случившееся со мной за всю мою жизнь, – говорил он впоследствии. – Это было так же невероятно, как если бы мы выстрелили 15-дюймовым снарядом по листу папиросной бумаги, а снаряд прилетел бы обратно и попал в нас. Поразмыслив, я понял, что такое обратное рассеяние должно быть результатом единичного столкновения, а когда я выполнил расчеты, оказалось, что эффект такого порядка величины возможен только в одном случае – если рассматривать систему, в которой подавляющая часть массы атома сосредоточена в ядре чрезвычайно малого размера»[207].
Слово «столкновение» обманчиво. То, что представлял себе Резерфорд, выполняя расчеты и чертя схемы атомов на больших листах плотной бумаги[208], в точности соответствовало такой искривленной траектории, направленной сначала к компактному, массивному центральному телу, а затем от него, которую описывает комета в своем гравитационном па-де-де с Солнцем. Он изготовил специальную модель – тяжелый электромагнит, подвешенный наподобие маятника на десятиметровой проволоке и скользящий по поверхности другого электромагнита, установленного на столе[209]. Когда у двух соприкасающихся сторон магнитов были одинаковые полярности, что вызывало их взаимное отталкивание, маятник отклонялся по параболической траектории, зависящей от скорости и угла сближения, – точно так же, как отклонялись альфа-частицы. Резерфорду, как всегда, требовалось наглядное представление того, над чем он работал.
Когда и последующие эксперименты подтвердили его теорию о существовании в атоме маленького массивного ядра, он наконец решился ее обнародовать. В качестве аудитории он выбрал старую манчестерскую организацию, Манчестерское литературно-философское общество – то есть «в основном людей с улицы, – говорит Джеймс Чедвик, еще студентом присутствовавший при этом историческом событии 7 марта 1911 года, – людей, интересовавшихся литературными и философскими идеями, в основном коммерсантов»[210].
Первым пунктом повестки дня было сообщение манчестерского импортера фруктов о редкой змее, которую он нашел в партии бананов с Ямайки. Змею он продемонстрировал[211]. Затем настала очередь Резерфорда. Сохранилась лишь аннотация его выступления, но Чедвик вспоминает, что он чувствовал, слушая его: «Для нас, совсем молодых, это выступление было совершенно потрясающим… Мы понимали, что эта идея явно истинна, что это и есть подлинная суть»[212].
Резерфорд нашел в атоме ядро. Пока что он не знал, как располагаются электроны атома. На собрании в Манчестере он говорил о том, что «…атом, по предположению, состоит из центрального ядра, окруженного зарядом противоположного знака, равномерно распределенным внутри сферы радиуса R…»[213][214]. Эта формулировка была достаточно обобщенной для расчетов, но не учитывала того существенного физического факта, что «противоположный электрический заряд» должен быть воплощен в электронах. Они должны каким-то образом располагаться вокруг ядра.
Здесь мы встречаемся еще с одной загадкой. В 1903 году японский физик-теоретик Хантаро Нагаока предложил «сатурнианскую» модель атома, в которой вокруг «положительно заряженной частицы» вращаются плоские кольца электронов, подобные кольцам Сатурна[215]. Нагаока приспособил для своей модели математический аппарат, взятый из первой статьи Джеймса Клерка Максвелла, опубликованной в 1859 году и принесшей ему триумфальный успех; она называлась «Об устойчивости движения колец Сатурна». Все биографы Резерфорда согласны в том, что Резерфорд узнал о статье Нагаоки только 11 марта 1911 года – после манчестерского собрания, – когда он прочитал о ней в открытке, присланной другом-физиком: «Кэмпбелл сказал мне, что Нагаока когда-то пытался предположить наличие в атоме большого положительного центра, чтобы объяснить оптические эффекты»[216]. Затем он нашел эту статью в журнале Philosophical Magazine и добавил ее обсуждение на последнюю страницу своей развернутой статьи под названием «Рассеяние α- и β-частиц веществом и строение атома», которую отправил в тот же журнал в апреле. В этой статье он писал: «Интересно отметить, что Нагаока математически рассмотрел атом “Сатурния”, который, по его предположению, состоит из центральной притягивающей массы, окруженной кольцами вращающихся электронов»[217][218].
По-видимому, однако, Нагаока был у него незадолго до этого, так как 22 февраля 1911 года японский физик писал Резерфорду из Токио, благодаря его «за тот чрезвычайно теплый прием, который Вы оказали мне в Манчестере»[219]. Однако два физика, видимо, не обсуждали атомные модели; иначе Нагаока, вероятно, продолжил бы такое обсуждение в своем письме, а Резерфорд, бывший человеком абсолютно честным, несомненно упомянул бы об этом в своей статье.
Одна из причин, по которым Резерфорд не знал о сатурнианской модели атома Нагаоки, состоит в том, что модель эта подверглась резкой критике и была отвергнута вскоре после того, как Нагаока ее предложил. Дело в том, что в ней был один крупный недостаток – тот самый теоретический дефект, который оставался и в модели атома, предложенной теперь Резерфордом[220]. Кольца Сатурна устойчивы, потому что сила, действующая между составляющими их обломочными частицами – гравитация, – создает притяжение. Однако сила, действующая между электронами сатурнианских электронных колец Нагаоки, то есть между отрицательными электрическими зарядами, – создает отталкивание. Из этого математически следует, что при наличии двух или более электронов, равномерно распределенных по орбите вращения вокруг ядра, они должны приобрести колебательные моды – неустойчивые состояния, – которые быстро приведут к распаду атома.
204
Ibid.
205
Х. Гейгер и Э. Марсден, «О диффузном отражении α-частиц» (On a diffuse reflection of α-particles) в Co
206
Ср. Norman Feather в Rutherford (1963), p. 22.
207
Цит. по: Co
208
Ср. фотографии этих исторических записей в в Rutherford (1963), после p. 240.
209
Ср. Eve (1939), p. 197.
210
Chadwick OHI, AIP, p. 11.
211
Ibid. Ср. также Chadwick (1954), прим. на p. 442.
212
Chadwick OHI, AIP, p. 12.
213
Резерфорд Э. Рассеяние α- и ß-частиц веществом и строение атома // Избранные научные труды. Строение элементов и искусственное превращение элементов. М.: Наука, 1972. С. 213.
214
Rutherford (1963), p. 212.
215
Ср. Co
216
Цит. по: Feather (1940), p. 136.
217
Цит. по: Резерфорд Э. Избранные научные труды. Строение атома и искусственное превращение элементов. М.: Наука, 1972. С. 223.
218
Rutherford (1963), p. 254.
219
Нагаока косвенно указывает, что приезжал до июля 1910 г. – после открытия Марсдена, сделанного в 1909-м, но до того, как Резерфорд объявил Гейгеру под Рождество 1910 г., что нашел объяснение. – Прим. авт.
220
Ср. обсуждение в Heilbron and Kuhn (1969), p. 241 и далее.