Страница 1 из 4
Квантовый мир. Невероятная теория в самом сердце мироздания
Под редакцией Элисон Джордж
The Quantum World
The Disturbing Theory at the Heart of Reality
First published in the English language by Hodder & Stoughton Limited.
Печатается с разрешения издательства Hodder & Stoughton Limited.
© New Scientist, 2017
© Оформление, ООО «Издательство АСТ», 2020
Над книгой работали
Эта книга основана на докладах, прочитанных на мастер-классе «Квантовый мир» журнала New Scientist и статьях, ранее опубликованных в New Scientist вместе со специально подготовленными материалами.
Элисон Джордж – главный редактор, редактор серии книг Instant Expert журнала New Scientist.
Хьюго Кейбл – старший научный сотрудник Бристольского университета (Великобритания), где он занимается исследованием квантовых вычислений и квантовых датчиков. Он участвовал в написании параграфа «Шум – ключ к квантовым технологиям?» в главе 5.
Джонджо Макфадден – профессор молекулярной генетики Университета Суррея (Великобритания), один из пионеров молодой развивающейся области – квантовой биологии. Он написал параграф «Использовала ли жизнь мощь квантовой механики?» в главе 6.
Каван Моди – преподаватель Университета Монаша в Мельбурне (Австралия), чьи научные интересы сосредоточены на теории квантовой информации. Он участвовал в написании параграфа «Шум – ключ к квантовым технологиям?» в главе 5.
Дэвид Тонг – профессор теоретической физики Кембриджского университета (Великобритания), работающий над квантовой теорией поля и теорией гравитации. Он написал параграф «Вопрос квантовой гравитации» в главе 6.
Влатко Ведрал – профессор квантовой информатики Оксфордского университета (Великобритания) и Национального университета Сингапура. Он написал параграфы «Как был обнаружен квантовый мир» в главе 1 и по квантовым вычислениям в главе 4.
Также выражаем благодарность следующим авторам и редакторам:
Питер Элдхаус, Галаад Амит, Анил Анантасвами, Яков Арон, Стивен Беттерсби, Селеста Бивер, Майкл Брукс, Аманда Джефтер, Лиза Гроссман, Дуглас Хэвен, Роуэн Хупер, Валери Джемисон, Ричард Уэбб.
Введение
«Действительно ли природа может быть такой абсурдной, какой она предстает перед нами в экспериментах с атомами?»
Это вопрос, ответ на который физик Вернер Гейзенберг искал поздними вечерами со своим научным руководителем Нильсом Бором в течение 20-х годов XX века, когда они составляли свод правил для абсолютно нового понимания мира.
Квантовый мир, который они обнаружили, и правда странный: в нем частицы могут существовать в двух местах одновременно и быть непонятным образом связанными, как бы далеко они друг от друга ни находились. На уровне атомов, электронов и частиц света объекты, кажется, меняют свои свойства, когда на них смотрят. Но этого, безусловно, не может быть, как думал Гейзенберг.
Сегодня, спустя почти век интенсивных исследований, мы знаем ответ на вопрос Гейзенберга. В микроскопическом мире атомов, частиц и их составляющих наше обычное понимание реальности не работает: здесь действуют новые правила, открывающиеся с помощью экспериментальной проверки.
С путеводителем из серии Instant Expert журнала New Scientist мы отправимся в путешествие по этому таинственному миру и познакомимся с интересными личностями, благодаря которым он открыт. В их число входят Альберт Эйнштейн, ненавидевший идею «жуткого действия на расстоянии» в квантовой механике, и Эрвин Шрёдингер, придумавший свой знаменитый мысленный эксперимент с котом, чтобы показать абсурдность этого странного места.
Что это все означает? Становятся ли вещи реальными только в те моменты, когда за ними наблюдают? Рождаются ли новые вселенные каждый раз, когда мы проводим измерения? И что это все значит для фундамента реальности?
Вместе с этими умопомрачительными вопросами квантовая механика также дала нам много практических технологий: лазеры, ядерные реакторы и транзисторы, лежащие в основе работы компьютеров и всех цифровых технологий. В будущем ожидается еще больше: компьютеры более мощные, чем собранные когда-либо прежде, полностью защищенную коммуникацию и даже квантовую телепортацию.
В этой книге также исследуется та роль, которую квантовая механика играет в биологии. Например, использовала ли эволюция преимущество квантовой таинственности в разработке биохимии жизни – начиная с навигационных систем птиц и заканчивая фотосинтезом в растениях?
Идеи квантовой механики начинают распространяться на громадные масштабы космоса. Много физиков считают, что ее объединение с общей теорией относительности Эйнштейна откроет новое понимание Большого взрыва и природы пространства и времени.
Эта книга собирает воедино размышления ведущих физиков и лучшие материалы журнала New Scientist, чтобы познакомить вас с прошлым, настоящим и будущим квантового мира, его применениями и интригующими следствиями.
Элисон Джордж, главный редактор, редактор серии Instant Expert
1. Добро пожаловать в мир таинственного
Открытие квантового мира было спровоцировано тем, что его инициатор назвал «актом отчаяния» в конце XIX века. В этой главе описано, как возник и развивался новый раздел теоретической физики – квантовая физика.
Как был обнаружен квантовый мир
Когда немецкий физик Макс Планк (1858–1947) был молодым студентом, профессор университета сказал ему, что «почти все уже открыто и остается лишь заполнить несколько пробелов». Когда в свои 40 лет (см. рис. 1.1) Планк взялся за одну из этих небольших проблем, в ходе ее решения он невольно дал начало революционно новому разделу физики.
Проблема, которую исследовал Планк, была связана с излучением, исходящим от абсолютно черного тела – идеального поглотителя и излучателя энергии, который не поддавался объяснению с позиции существующих законов физики (см. ниже в параграфе «Законы классической физики»). Какими бы горячими ни становились эти тела, они почти не испускали ультрафиолетового излучения.
Рис. 1.1. Макс Планк, основатель квантовой теории, совершивший революционный переворот в нашем понимании атомных и субатомных процессов.
В 1900 году Планк сообщил о своем решении проблемы «ультрафиолетовой катастрофы»: вместо того чтобы быть непрерывной, энергия распространяется маленькими порциями, которые он назвал квантами. Но Планк совершенно не имел представления о том, почему энергия должна быть именно такой, и поэтому назвал свое решение «актом отчаяния». Он не располагал никакими экспериментальными подтверждениями и основывался всего лишь на математической формуле. Все, и в первую очередь Планк, не понимали, насколько радикальным открытием было это решение.
Ситуация изменилась пять лет спустя, когда 25-летний неизвестный, которого звали Альберт Эйнштейн (1879–1955) (см. рис. 1.2), предложил еще более революционную идею. Он работал над фотоэлектрическим эффектом – явлением, в ходе которого электроны высвобождаются из металла светом, имеющим определенные частоты независимо от его интенсивности. Эйнштейн утверждал, что если энергия распространяется дискретными пакетами, то таким же образом распространяется и свет. Он предположил, что свет представляет собой не непрерывную волну, а поток маленьких «атомов», названных фотонами. Хотя Эйнштейн наиболее известен своей теорией относительности, свою статью 1905 года, в которой и предложил концепцию фотонов, он назвал «единственной революционной».