Добавить в цитаты Настройки чтения

Страница 6 из 8



Признание за открытия пришло к Кэннон еще при ее жизни. До конца дней своих в 1941 г. она получала награды и почетные степени, становилась членом научных обществ в Европе и Северной Америке, являя собой образец для подражания нескольким поколениям женщин-ученых.

Почему Кэннон оказалась столь продуктивной и успешной? Некоторые историки отмечают влияние ее матери, научившей дочь образцовому ведению домашнего хозяйства. Другие указывают на почти полную глухоту Кэннон (возможно, возникшую вследствие кори), которая могла ограничить ее интерес к общению. Но многие женщины того времени страдали от недугов и не хуже управлялись с домашним хозяйством. Я думаю, есть более значимый фактор, объясняющий успех Кэннон: безусловно, она была умна и увлечена астрономией, но, в отличие от почти всех ее современниц, ей выпал шанс. Веками история науки была историей упущенных возможностей, безымянных потенциальных Эйнштейнов и Ньютонов – блестящих умов, лишенных из-за своего происхождения возможности реализовать тягу к науке. Самая большая трагедия для всех нас заключается в нескончаемой череде нереализованных стремлений, нераскрытых прорывов.

Звездная классификация Энни Джамп Кэннон предоставила нам возможность выявления роли звезд в образовании углерода. Гарвардская спектральная классификация показывает температуру поверхности звезды – от сравнительно холодных красных звезд до супергорячих голубых. Астрономам того времени было ясно также, что спектральные линии дают информацию об относительной распространенности разных химических элементов, но они не знали, как перевести интенсивности линий в химический состав.

Влияние температуры путает все карты. Каждый атом состоит из отрицательно заряженных электронов в оболочках, окружающих положительно заряженное ядро. Электроны, перескакивающие между этими оболочками, влияют на появление характерных спектральных линий, которые и были запечатлены на фотопластинках Гарвардской обсерватории. Однако при высоких температурах звезд интенсивные столкновения атомов срывают электроны с внешних оболочек: атомы ионизируются, что ведет к снижению четкости некоторых линий спектра. Водород и гелий – первый и второй элементы Периодической таблицы – представляют собой предельные случаи. Большинство атомов водорода теряют свой единственный электрон, превращаясь в протоны. Большинство атомов гелия теряют оба электрона и становятся альфа-частицами с двумя протонами и двумя нейтронами. Раз нет электронов, то невозможны и их скачки, поэтому спектральные линии ионов водорода и гелия гораздо слабее, чем многих других элементов.

Сесилия Хелена Пейн-Гапошкина дала расшифровку сложных взаимосвязей между спектром звезд и их химическим составом в работе 1925 г., которую ее коллеги охарактеризовали как «самую блестящую кандидатскую диссертацию, когда-либо написанную по астрономии»[20]. Пейн родилась в 1900 г. в английском Уэндовере в семье с выдающимися академическими традициями. С четырехлетнего возраста ее воспитывала овдовевшая мать, которая поощряла в девочке интерес к науке. Сесилия училась в Кембриджском университете, получая стипендию Ньюнэм-колледжа, и была отличницей по биологии, химии и физике. Так как в то время получить степень в Кембридже могли только мужчины, Пейн не имела возможности продолжать обучение в рамках британской системы и переехала из Англии в Гарвард, где в 1925 г. стала первой женщиной, получившей степень PhD по астрономии.

В основе успеха диссертации Пейн лежало применение положений новой для того времени теории ионизации – зависимых от температуры процессов, в ходе которых атомы в звездах теряют свои электроны. Исследовательница поняла, что, хотя относительное обилие многих важных элементов (например, кислорода, кремния и углерода) можно точно определить по интенсивности основных спектральных линий, количество водорода и гелия сильно недооценивается – для водорода, возможно, в миллион раз. Она пришла к поразительному выводу, что водород и гелий – самые распространенные элементы во Вселенной – во многих случаях составляют более 98 % общей массы звезды. Этот результат показался настолько невероятным коллегам Пейн, долгое время полагавшим, что состав Земли точно соответствует составу Солнца, что ее открытия поначалу не приняли. Старшие коллеги призывали Пейн назвать выводы в ее первой публикации «сомнительными», но вскоре, когда и другие исследователи прибегли к новаторским методам, ее правота подтвердилась.

Открытия Пейн указали путь к более глубокому пониманию космического происхождения и распространенности углерода, составляющего четвертую часть всех атомов, которые не являются водородом или гелием. Но как звезды вырабатывают такое огромное количество шестого элемента?

Большинство звезд – это гигантские сферы, насыщенные водородом. Наше Солнце как раз такой случай. Преобразование водорода в гелий – постоянно действующий процесс ядерного синтеза, называемый выгоранием водорода, – обеспечивает жизнь Солнца и его свечение, яркость которого почти не изменилась за прошедшие 4,5 млрд лет. Девяносто процентов звезд в ночном небе вовлечены в тот же процесс: гелий вырабатывается при огромных температурах и давлениях глубоко в их недрах, где протоны (ядра водорода) сталкиваются и соединяются, образуя бóльшие ядра из меньших фрагментов и частиц. По общему мнению, Солнце за счет выгорания водорода останется стабильной звездой еще несколько миллиардов лет. Только тогда, когда водород в ядре Солнца в основном превратится в гелий, наступит новая, более бурная фаза выгорания гелия – процесса, в ходе которого вырабатывается углерод.

Английский астроном сэр Фред Хойл впервые описал реакции ядерного синтеза, в ходе которых гелий в звездах преобразуется в углерод, в 1954 г., когда преподавал в колледже Святого Иоанна Кембриджского университета[21]. Карьера Хойла была необыкновенно разносторонней. Он изучал математику в Кембридже, затем в 1940 г. в возрасте 25 лет стал работать для военных нужд в области исследования радаров. Научные изыскания Хойла привели его в Соединенные Штаты, где из исследований, связанных с Манхэттенским проектом, он впервые узнал о ядерном синтезе. Десять первых послевоенных лет Хойл опять провел в Кембридже, погрузившись в изучение ядерных процессов в звездах.



К 1950-м гг. основная концепция нуклеосинтеза, заключающаяся в том, что высокие температуры и давления в недрах звезд способствуют ядерному синтезу, в ходе которого образуются новые элементы, была уже хорошо известна. Хойл понял, что распространенность элементов в природе отражает этапы звездных процессов, в результате чего маленькие ядерные кирпичики соединяются в большие ядра. Некоторые элементы (например, железо и кислород) более распространены по сравнению с другими (например, бериллием и бором) потому, что определенные комбинации протонов и нейтронов образуются легче, чем иные. Особо важны состояния резонанса, способствующие одновременному присоединению нейтрона, протона или альфа-частицы (ядра гелия-4 с двумя протонами и двумя нейтронами). Но большинство новых ядер формируется посредством поэтапного добавления одного из этих малых ядерных кирпичиков к уже существующим ядрам.

Углерод же отличался от всех. Расчеты того времени показывали, что нет простого пути, приводящего к его синтезу. Отсюда следовало, что этот элемент должен быть довольно редким. Но измерения его концентраций в звездах, выполненные Сесилией Пейн и ее коллегами, указывали на то, что углерод является четвертым по распространенности элементом во Вселенной. Чтобы объяснить это несоответствие, Хойл предложил детально продуманный механизм, названный тройным альфа-процессом[22]. Исследователь знал, что более старые звезды накапливают в своих недрах ядра гелия-4 (т. е. альфа-частицы). При взаимодействии двух альфа-частиц легко образуются ядра бериллия-8 – с четырьмя протонами и четырьмя нейтронами. А затем все, что нужно сделать для преобразования бериллия-8 в углерод-12, – это добавить еще одну альфа-частицу. Но есть загвоздка: бериллий-8 чрезвычайно нестабилен и распадается на части менее чем за одну квадриллионную секунды. Поэтому предположение, что углерод-12 образуется при добавлении третьей альфа-частицы к хрупкому бериллию-8, кажется невероятным.

20

Цит. по: J. Turner, “Cecilia Helena Payne-Gaposchkin,” in Contributions of 20th Century Women to Physics (Los Angeles: UCLA Press, 2001).

21

Simon Mitton, Fred Hoyle: A Life in Science (New York: Cambridge University Press, 2011).

22

Более подробное описание вы можете найти в книге: D. A. Ostlie and B. W. Carroll, An Introduction to Modern Stellar Astrophysics (San Francisco: Addison-Wesley, 2007).