Добавить в цитаты Настройки чтения

Страница 7 из 10



Только теперь геометр начинает говорить об измерении. Он вводит определение: измерить отрезок L с помощью единичного отрезка se, это значит определить одно из двух выражений:

Или

Здесь n – число равных частей, на которые поделена единица se, а m, m1, m2 – число таких частей в выражениях (2. 1) и (2. 2). Если имеет место выражение (2. 1), то геометр говорит, что единица se и отрезок L – соизмеримы. Если L не удается представить в виде (2. 1), а удается представить только в виде (2. 2), то геометр говорит, что единица se и отрезок L – не соизмеримы.

Таким образом, понятие «измерение» пришло в физику от математиков. Физик в своих измерениях всегда только копирует действия математика и его понятие измерения ничем не отличается от понятия измерения математика. Разница лишь в том, что у физика всегда имеется только выражение (2. 2) (что связано со степенью точности измерения), но это не меняет сути дела.

2. 4. Аксиома неизменности и преобразования Лоренца

А теперь допустим, что геометру говорят: ваша единица длины se может меняться в зависимости от того, как на неё посмотрит наблюдатель или от того как она двигается и т. д. Тогда геометр скажет: « В таком случае я не могу сказать, что я что-то измерил; понятие измерения теперь потеряло смысл». И он будет прав (Аксиома не работает). Но тогда и физик должен сказать то же, что и геометр (если физик последователен): я тоже не могу сказать, что я что-то измерил; понятие измерения потеряло смысл.

А когда Аксиома перестает действовать? А тогда, когда начинают выводить преобразования Лоренца [2, с. 366]. Здесь один геометрический объект – сфера, в центре которой находится источник света (система координат OXYZ), при появлении (всего лишь) наблюдателя превращается в другую – сферу, в центре которой теперь уже находится наблюдатель (система OIXIYIZI). Пока наблюдателя не было, уравнение сферы было таково:

Радиус этой сферы равен ct, а центр сферы находится в точке O, то есть там же, где находится и источник света. И это соответствует физической ситуации. Но вот появляется наблюдатель (со своей системой координат OIXIYIZI) и согласно преобразованиям Лоренца уравнение сферы становятся таковым:

Но сфера (2. 4) это уже совсем другая сфера, нежели сфера (2. 3). Во-первых, радиус сферы (2. 3) не равен радиусу сферы (2. 4), потому, что в преобразованиях Лоренца t не равно tI. Во-вторых, в центре сферы (2. 4) находится теперь уже не источник света, а наблюдатель (точка OI), источник света как оставался в точке O (центр сферы (2. 3)), так и остается в ней. Сфера (2. 3) реально существующая, таинственным образом преобразовалась в другую, не равную самой себе сферу (2. 4), только потому, что изволил появиться наблюдатель. Все это означает, что преобразования Лоренца отменяют Аксиому (она уже не действует).

Последовательный физик должен сказать: «Мы вывели преобразования Лоренца, но теперь измерения потеряли смысл». Но последних четырех слов сторонники теории относительности почему-то никогда не говорят. Возможно, они думают, что при измерениях они не копируют действия математика, а действуют как-то гораздо умнее. Но как? Они это не объясняют. И весьма сомнительно, что они это когда-нибудь объяснят.



Теперь нам становится понятным, почему ситуация с линейками, о которых велись рассуждения выше, становится неразрешимой. Верность или неверность способов измерения потеряла смысл, потому что ещё до этого (т. е. при выводе преобразований Лоренца) потеряло смысл понятие измерения.

А как обстоят дела с измерениями в классической механике? Здесь используются преобразования Галилея, а они, как легко видеть, не отменяют Аксиомы. В самом деле, преобразования Галилея преобразуют сферу (2. 3) в такую:

Сфера (2. 5) совпадает со сферой (2. 3). Радиус сферы (2. 5) равен радиусу сферы (2. 3) потому, что в преобразованиях Галилея t = tI. Наличие слагаемого Vt в скобках первого члена говорит о том, что центр сферы (а вместе с ним и источник света) двигаются по отношению к наблюдателю со скоростью (– V) или (что, то же самое), наблюдатель двигается по отношению к центру сферы со скоростью V. И все это, ни коим образом, не противоречит реальной физической ситуации. Преобразования Галилея не отменяют Аксиомы; напротив, они ей строго подчиняются. Поэтому в классической механике измерения возможны и имеют ясный физический смысл.

2. 5. Релятивистская сфера

Но есть еще опыт (наипростейший, очищенный от всего лишнего, что могло бы помешать правильно рассуждать). И мы не можем не упомянуть о нем. Пусть точечный источник света испускает сферический волновой фронт. Каков будет радиус сферы по истечению времени T? Ответ: радиус будет равен cT. А каков будет её диаметр? Ответ (релятивистский): согласно постулату о постоянстве скорости света диаметрально противоположные точки этой сферы удаляются друг от друга также со скоростью света c, поэтому диаметр сферы также равен cT. Диаметр сферы оказался равен её радиусу! Легко видеть, что при других скоростях расширения сферы (меньших c), «релятивистская» сфера всегда будет обладать следующим, неприятным, свойством: диаметр «релятивистской» сферы всегда меньше её удвоенного радиуса (это следует из релятивистской формулы сложения скоростей [2, с. 371]). Такую сферу не сможет построить ни один геометр. А не построивши её, геометр ничего и не сможет измерить. А вслед за ним ничего не сможет измерить и физик. И это потому, что в теории относительности нет Аксиомы. На наш взгляд, достаточно рассмотреть только этот один опыт, чтобы понять всю бессмысленность каких-либо измерений в теории относительности.

2. 6. Подмена одного понятия другим

Подмена одного понятия на другое (не равносильное прежнему), довольно распространенная ошибка в логических рассуждениях. Она имеется и в теории относительности. Это – незаконная подмена тензора одного ранга на тензор другого ранга. В теории относительности вектор скорости света

заменяется скаляром c, то есть имеет место подмена: c вместо c. В самом деле. В теории относительности не существует понятия – проекции вектора скорости света на оси координат, то есть чисел – c1,c2,c3. Это означает нарушение правил тензорной алгебры. Аналогично при введении четырехмерного пространства-времени скаляр ct заменяется на вектор, то есть:

Здесь слева – вектор, а справа – скаляр потому, что ie4 есть единичный вектор пространства L4 с базисом (e1, e2, e3, ie4) и этот базис вводится совершенно независимо от каких-либо существующих скалярных величин (в том числе и скалярной величины – времени). Трехмерное пространство L3 (e1, e2, e3) является подпространством указанного выше четырехмерного пространства L4 и то, что верно в L3 верно так же и в L4. Но в L3 проекций скалярной величины времени на оси координат не существует, а значит, таких проекций не будет существовать и в L4. Скалярная величина – время в подпространстве L3 остается таковой (скалярной) и в пространстве L4. Нетрудно видеть, что эти подмены есть также следствия отсутствия Аксиомы. В самом деле; если при выводе преобразований Лоренца мы запросто заменяем одну сферу на другую, то почему тогда нам нельзя заменить один геометрический объект на другой? (Скаляр и вектор это – разные геометрические объекты). Таким образом, введение четырехмерного пространства-времени по схеме (2. 6) не является обобщением. Это – ошибка. Эта математическая ошибка тотчас становится и физической потому, что физические величины описываются тензорами.