Добавить в цитаты Настройки чтения

Страница 84 из 167

Но здесь аналогия кончается. Квантовая механика не была ни субъективной, ни объективной трагедией Эйнштейна. Прежде всего для Эйнштейна восстановление разорванной "связи времен", т.е. устранение ньютоновых абсолютов и лоренцова эфира не могло быть однократным актом, приводящим к тысячелетнему царству обретенной, наконец, окончательной истины. Как уже говорилось, специальная теория относительности в большей степени, чем все предшествующие физические теории, разрушила не только ньютоновы догмы, но и дух догматизма в целом. Затем Эйнштейну принадлежала идея фотонов, т.е. исток теории, приписывающей частицам волновые свойства, а волнам - корпускулярные. Наконец, Эйнштейн по существу связывал критику квантовой механики с перспективой дальнейшего развития физики, а не с попятным движением к классическим представлениям.

На этом тезисе мы уже останавливались. Эйнштейн весьма органически перешел в конце жизни от признания принципа Маха универсальным принципом природы к отрицанию его универсальности. Он говорил об ограниченности не только ньютоновой механики, но и всех теорий такого же типа, как и ньютонова. Создание новой теории, выходящей за рамки "классического идеала", не было субъективной трагедией для мыслителя, в такой большой мере приблизившего физику к этому идеалу. Когда физика пошла дальше, Эйнштейн не ощущал ее движение как крах мировой гармонии. В начале этой книги была сделана попытка очертить широкий и подвижный рационализм Эйнштейна. Этому живому, не претендующему на последнее слово, рационалистическому мировоззрению чужда трагедия оставленных позиций. Поэтому квантовая механика не была для Эйнштейна субъективной трагедией.

345

Она не была и объективной трагедией его идей, потому что объективным источником усложнения картины мира, выводящего ее за рамки "классического идеала", было последовательное и вполне органическое развитие концепций Эйнштейна.

Органическое, но совсем не идиллическое. Если у Эйнштейна не было трагедии оставленных позиций, то у него была трагедия недостигнутых позиций. Не "последних", "окончательных" и т.д., а ближайших, уже видимых, уже необходимых. Мы знаем, что поиски единой теории поля в двадцатые годы не приводили к физически однозначным и физически содержательным результатам. Вейль рассказывал, что в Принстоне в тридцатые годы Эйнштейн храбро встречал неудачи и произносил: "Ну вот, я опять сбился с пути", так же весело, как и фразы об успехах. Действительно, Эйнштейна не обескураживала каждая неудача, но он тяжело переживал неуверенность в достижении общего замысла - построения единой теории поля.

Эта неуверенность не раз высказывалась в весьма эйнштейновской, мягкой и иронической форме. В одной из первых глав этой книги упомянута надпись в принстонском институте: "Бог изощрен, но не злонамерен". Но, прощаясь в Принстоне с Вейлем, Эйнштейн сказал ему: "А может быть, он все-таки немного злонамерен?"

"Бог не злонамерен" означало для Эйнштейна не только существование мировой гармонии и не только необходимость и принципиальную достижимость единой теории поля. В этом Эйнштейн не сомневался. Но приведенное изречение означало также, что гармония бытия может быть выражена в точных геометрических соотношениях. И здесь у Эйнштейна появлялось ощущение величайшей трудности определения указанных соотношений: "А может быть, он все-таки немного злонамерен?"

Этой злонамеренности во всяком случае хватало, чтобы Эйнштейн мог сомневаться в том, что ему удастся увидеть решение проблемы Чем дальше, тем слабее становилась эта надежда и тем энергичнее работал Эйнштейн. Весной 1942 г. он писал своему другу Гансу Мюзаму (старому врачу, парализованному и лежавшему в то время в Хайфе):

346

"Я стал одиноким старым бобылем, известным главным образом тем, что обхожусь без носков. Но работаю я еще фанатичнее, чем раньше, и лелею надежду разрешить уже старую для меня проблему единого физического поля. Это напоминает воздушный корабль, на котором витаешь в небесах, но неясно представляешь себе, как опуститься на землю... Быть может, удастся дожить до лучшего времени и на мгновенье увидеть нечто вроде обетованной земли..." '

Через два года Эйнштейн вновь писал Мюзаму:

"Быть может, мне суждено еще узнать, вправе ли я верить в свои уравнения Это не более чем надежда, потому что каждый вариант связан с большими математическими трудностями. Я вам долго не писал, несмотря на муки совести и добрую волю, потому что математические мучения держат меня в безжалостных тисках и я не могу вырваться, никуда не хожу и сберегаю время, откладывая все ad colendas graecas. Как видите, я превратился в скрягу. В минуты просветления я сознаю, что эта жадность по отношению ко времени порочна и глупа" [2].

1 Helle Zeit, 50-51.

2 Ibid., 51.

В 1953 г. Эйнштейн на пресс-конференции, устроенной в связи с его 74-летием, говорил:



"Как только была завершена общая теория относительности, т.е. в 1916 г., появилась новая проблема, состоявшая в следующем. Общая теория относительности весьма естественно приводит к теории гравитационного поля, но не позволяет найти релятивистскую теорию для любого поля. С тех пор я стремился найти наиболее естественное релятивистское обобщение закона тяготения, надеясь, что обобщенный закон будет общей теорией поля. В течение последних лет мне удалось получить такое обобщение, выяснить формальную сторону проблемы, найти необходимые уравнения. Но математические трудности не позволяют получить из этих уравнений выводы, сопоставимые с наблюдением. Мало надежды, что это удастся до конца моих дней".

Эту характеристику своих результатов Эйнштейн повторял неоднократно вплоть до последнего дня жизни, когда он уже знал о близости смерти и был уверен, что теория останется незавершенной, ее математическая корректность не гарантирует физической однозначности.

347

Но Эйнштейн понимал, что дело не только в последующей математической разработке физической теории, в последующем преодолении математических трудностей и получении численных решений уравнений поля. Для Эйнштейна теория но имеет права называться физической, если она по включает физической идеи, допускающей сопоставление с наблюдениями.

Подобная идея была тесно связана с тем или иным отношением к теории микромира. Эйнштейн думал, что единая теория поля позволит вывести квантово-статистические закономерности микромира из нестатистических (управляющих не вероятностями, а самими фактами), более глубоких и общих закономерностей бытия. Тем самым были бы устранены и некоторые позитивистские тенденции в физике.

"Я работаю, - писал Эйнштейн Соловину в 1938 г., - со своими молодыми людьми над чрезвычайно интересной теорией, которая, надеюсь, поможет преодолеть современную мистику вероятности и отход от понятия реальности в физике..." [3]

В письме к Соловину через двенадцать лет Эйнштейн признает, что единая теория поля еще не может быть проверена, так как математические трудности не позволяют придать ей вид, допускающий однозначную оценку. Общие, философские и логические аргументы не убеждают физиков.

"Единая теория поля теперь уже закончена... Несмотря на весь затраченный труд, я не могу ее проверить каким-либо способом. Такое положение сохранится на долгие годы, тем более что физики не воспринимают логических и философских аргументов" [4].

3 Lettres a Solovine, 75.

4 Ibid., 107.

Неужели беспримерное напряжение всех сил гениального мыслителя, продолжавшееся почти тридцать лет, было бесплодным?

Попытке ответа на этот вопрос должно предшествовать изложение другой линии развития физики в тридцатые - пятидесятые годы.

348

Квантовая механика, созданная в 1924-1926 гг., была нерелятивистской теорией. В ней не учитывались процессы, предсказанные теорией относительности, например изменение массы электрона в зависимости от его скорости. В 1929 г. Дирак написал релятивистское волновое уравнение, которому подчинено движение электрона. В нем учитывались такие релятивистские поправки, как изменение массы электрона. Уравнение Дирака точнее описывало движение электрона, обладающего большой энергией, движущегося с очень большой скоростью. Но при этом у Дирака в его расчетах появились отрицательные значения энергии электрона. Этот физически неприемлемый вывод заставил Дирака предположить, что найденное им релятивистское волновое уравнение описывает не только поведение электрона, но и поведение другой частицы, которая отличается от электрона только зарядом - она имеет не отрицательный, как электрон, а положительный электрический заряд. Такая частица была экспериментально найдена и получила название позитрона.