Добавить в цитаты Настройки чтения

Страница 27 из 167

2 Успехи физических наук, 1956. 59. вып. 1, с. 127.

Постоянство скорости света

Представим себе двух физиков, у каждого из которых лаборатория, снабженная всеми мыслимыми физическими аппаратами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого - в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все аппараты для изучения всех существующих в природе законов - один в неподвижной лаборатории, другой в вагоне, - найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависит от переносного движения систем отсчета.

Эйнштейн

Эйнштейну было шестнадцать лет, когда он впервые задумался о том, с какой скоростью свет распространяется в различных, движущихся одна относительно другой системах отсчета. Тогда же, в Аарау, и впоследствии, в Цюрихе, за десять лет до создания теории относительности, Эйнштейн, стремясь нагляднее представить движение системы отсчета, мысленно рисовал движущиеся вместе с каким-то телом, прикрепленные к этому телу измерительные стержни, а также часы. Стержни и часы позволяют измерить положение каждого тела в каждое мгновение и определить его скорость. Таким образом, система отсчета рисовалась Эйнштейну в виде реального тела, к которому прикреплено начало координат, бесконечные координатные оси и множество сколь угодно длинных стержней, так что любое тело, где бы оно ни находилось в данный момент, совпадает по своему положению с определенными отметками на измерительных стержнях, т.е. имеет определенные координаты, причем "данный момент" один и тот же в каждой точке, ориентированной при помощи стержней, - мы можем сверить все находящиеся в этих точках часы. Чтобы не смешивать измерения, сделанные по отношению к данной системе отсчета,

112

с другими, отнесенными к иной системе отсчета, Эйнштейн представил себе человека, который движется вместе с системой и не видит никаких других систем. Он наблюдает только, совместились ли тела с отметками на измерительных стержнях данной системы отсчета. Этот "наблюдатель" фигурирует почти во всех изложениях теории относительности, но можно было бы обойтись и без него; он представляет собой столь же воображаемую фигуру, как и координатные оси и измерительные стержни, прибитые к движущемуся тепу и образующие движущуюся вместе с ним систему отсчета (систему отсчета, в которой это тело неподвижно). "Наблюдатели" так же мало затушевывают объективный смысл теории относительности, как выражение "если вы протянете веревку от Земли до Солнца..." ставит объективный факт - определенное расстояние между небесными телами - в зависимость от реальных или воображаемых измерений. Когда воображение рисует "наблюдателя", то появляется несколько неясный образ человека, привязанного к летящим в пространстве измерительным стержням и способного одновременно измерять положения тел при помощи этих бесчисленных и бесконечных по величине стержней. Этот образ может быть заменен менее точным, но более представимым образом пассажира в купе поезда с задернутыми занавесками на окнах или в каюте корабля (этой каютой пользовался, как мы помним, Галилей для демонстрации классического принципа относительности).

Представим себе корабль, движущийся с той же скоростью, что и волны на поверхности моря. Для находящегося на корабле "наблюдателя", т.е. для человека, который может измерить скорости только по отношению к кораблю, волны покажутся неподвижными. Не замечая ни неба, ни берегов, "наблюдатель" увидит как бы застывшую поверхность моря, он ничего не будет знать о движении волн - ведь они неподвижны по отношению к кораблю. Такие субъективные впечатления "наблюдателя" лишь условное выражение объективного факта: волны действительно неподвижны по отношению к системе отсчета, в которой неподвижен корабль (к системе, "привязанной" к кораблю).

113



Эйнштейна заинтересовал вопрос, сохранится ли неподвижность волн по отношению к кораблю (к системе отсчета, "привязанной" к кораблю, и к находящемуся на нем "наблюдателю"), если это будут не волны на водной поверхности, а электромагнитные волны, т.е. свет. Свет пробегает вдоль Земли со скоростью, приблизительно равной 300 000 километров в секунду. Пусть корабль движется по морю с такой же скоростью. Для "наблюдателя" на корабле свет имеет тогда нулевую скорость. Но в этом случае оптические процессы на корабле резко изменятся, например вспышка фонаря не осветит экрана, находящегося на носу корабля. Электромагнитное поле станет аналогичным застывшей поверхности моря, окружающей корабль, оно окажется переменным в пространстве, т.е. в пространство будут чередоваться гребни и впадины, но они не будут сдвигаться с течением времени. Такое изменение оптических процессов позволит "наблюдателю" зарегистрировать абсолютным образом движение системы. Вооруженный оптическими инструментами "наблюдатель" сможет отличить движущийся корабль от неподвижного. Но это противоречит теории Максвелла, в которой свет всегда представляет собой движущиеся электромагнитные волны. Противоречит это и интуитивному убеждению в невозможности зарегистрировать равномерное и прямолинейное движение при помощи внутренних эффектов в движущейся системе.

Об указанном парадоксе, овладевшем его мыслями в шестнадцать лет в Аарау, Эйнштейн говорит:

"Парадокс заключается в следующем. Если бы я стал двигаться вслед за лучом света со скоростью с (скорость света в пустоте), то я должен был бы воспринимать такой луч света как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует; это видно как на основании опыта, так и из уравнений Максвелла. Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя, неподвижного относительно Земли. В самом деле, как же первый наблюдатель может знать или установить, что он находится в состоянии быстрого равномерного движения?" [1]

1 Эйнштейн, 4, 278.

По существу, указанный парадокс является конфликтом между двумя идеями классической механики, перенесенными в новую область электродинамических процессов.

Первая из них представляет собой классическое правило сложения скоростей. Если человек идет по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда он идет по направлению движения поезда, и со скоростью 50-5 = 45 километров в час, когда он идет в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55-50 = 5 километров в час. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30-30 = 0 километров в час, т.е. они остаются неподвижными. Что же произойдет в случае электромагнитных волн? Сохранится ли здесь столь очевидное правило сложения скоростей?

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущейся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, т.е. можем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разность между их координатами в одной инерциальной системе отсчета - всегда равно их расстоянию в другой инерциальной системе.

Вторая идея - принцип относительности. Находясь на корабле, движущемся равномерно и прямолинейно, нельзя обнаружить его движение какими-либо внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое, электродинамическим эффектам? Интуиция (довольно явным образом связанная с классическим принципом относительности)