Добавить в цитаты Настройки чтения

Страница 110 из 167



Второй этап научной революции приводит к понятию инерции. В этом главный вклад космологии и механики Галилея в необратимую эволюцию картины мира. Но прошлое еще не стало подлинным прошлым, оно находится еще в теперь. Инерция Галилея еще не порвала

449

связи с круговыми относительными движениями на сферах аристотелевой космологии. Небесные тела, предоставленные самим себе, движутся по круговым орбитам. Прямолинейное движение по инерции - открытие Декарта. Это основной вклад картезианской физики в необратимое развитие познания. Но этот новый импульс, который дан научной революции на ее третьем, картезианском, этапе, не может стать основой завершения революции, создания относительно устойчивой и однозначной картины мира. Прямолинейное движение по инерции может объяснить движение по круговым орбитам и всю сумму наблюдаемых фактов с помощью ряда введенных ad hoc искусственных гипотез. Картезианская физика была явным образом лишена внутреннего совершенства. Завершением научной революции XVI-XVII вв. был ее четвертый этап - динамизм Ньютона, понятие силы, "Математические начала натуральной философии".

Конечно, такая периодизация научной революции крайне схематична и противоречащие ей исторические факты нетрудно найти. Но в данном случае схематизм вытекает из объективной "антипериодичности" науки XVI-XVII вв. Она сопротивляется периодизации в силу своего основного определения. Периодизация всегда исходит из различия раньше и позже, из временного интервала между ними. Но такой интервал был создан лишь на исходе XVII в., когда прошлое стало достоянием истории, подлинным прошлым, будущее стало содержанием прогнозов, подлинным будущим, а позитивное содержание науки отгородилось от того и от другого своей претензией на полную достоверность, своей подлинной, а иногда иллюзорной однозначностью.

К этому следует добавить несколько слов о той полосе сравнительно органического развития науки, которая началась после "Начал". Нельзя думать, что эпитет "органическое" исключает борьбу направлений. Достаточно напомнить, с какой энергией картезианство в XVII в. восставало против своего перемещения из науки в ее историю. Органичность эволюции состояла в том, что открытые экспериментом новые области находили внутреннее совершенство на основе уже установившейся аксиоматики без трансформации последней. В XIX в. имел место ряд открытий, выявивших специфические закономерности сложных форм, движения, несводимые к зако

450

нам механики. Оказалось, законы термодинамики, электродинамики, атомистической химии, эволюционной биологии не укладываются в общие схемы. Тем самым исчезла концепция полной сводимости законов бытия к законам классической механики. Но эти революционные акты не трансформировали ни содержания законов механики, ни логических норм науки и не приводили к общей научной революции. До поры до времени. На рубеже XIX в. и XX в. электродинамика вступила в противоречие с законами механики. Требование внутреннего совершенства новых представлений об электромагнитном поле привело к новому взгляду на соотношение пространства и времени, и это было началом новой общей научной революции.

Исходным пунктом теории относительности был конфликт между выводами классической механики и выводами классической электродинамики. Чтобы найти исторические антецеденты этого конфликта, исторические корни идей Эйнштейна в классической науке, следует остановиться на имеющихся в ньютоновых "Началах" истоках механики и истоках теории поля. Истоки того и другого это две задачи, которые Ньютон поставил перед исследованием природы. Первая из этих задач - по заданным силам определить движение тел, вторая - по заданному распределению тел определить действующие на них силы. Если первая задача получила сравнительно полное решение, то вторая, т.е. первоначальная форма теории поля, при своем решении, включавшем закон тяготения, содержала некоторую принципиальную нерасшифрованность понятия силы. Она и не могла быть расшифрована однозначным образом и здесь - корни того, что получило название физики принципов, противопоставленной физике моделей. В третьей книге "Начал" Ньютон поместил "Правила философствования" (Regula philosophandi), где излагается "индуктивный метод" с явной антикартезианской тенденцией, вызывавшей в Англии множество панегириков. Об "индуктивном методе" вообще писалось немало, но сейчас, в свете современной науки и эйнштейновской концепции критериев выбора физической теории, можно взглянуть по-новому на соотношение эмпирических и относительно априорных корней познания. При этом уточняется историческая оценка бэконовского и ньютоновского индуктивизма.



451

Подойдем к "Regula philosophandi" Ньютона с точки зрения перехода от одного этапа научной революции к другому - от картезианской кинетической физики к динамической картине мира. И Декарт, и Ньютон шли от наблюдений к весьма общим умозаключениям. Первый это делал с акцентом на логическом выведении, на том, что через три столетия Эйнштейн назвал внутренним совершенством. При этом Декарт но слишком заботился об однозначности частных объяснений. Ньютон ставил акцент на внешнем оправдании и старался не включать в механику неоднозначные гипотетические модели, хотя и не раз, особенно в оптике, изменял своему заклятью. "Физика принципов" Ньютона без кинетических гипотетических моделей открывала дорогу феноменологическим понятиям, из которых главным оказалось понятие силы. Сила была объектом строгого математического анализа и вместе с тем объектом количественного эксперимента. Математика и эксперимент здесь встречались, и при этом достигалось некоторое согласие внешнего оправдания и внутреннего совершенства физической теории. Тем самым гарантировалась их однозначная достоверность; относительные истины в большей мере совпадали по направлению с необратимой эволюцией, направленной к абсолютной истине. Другое дело, что отказ от кинетической расшифровки силы абсолютизировался и это давало основание для справедливой критики ньютоновских индуктивистских претензий.

Но здесь в игру вступало сохранение вопрошающего инварианта познания, сохранение вопроса о происхождении силы, о дальнейшей расшифровке силы как причины движения, которую Ньютон сделал конечным пунктом анализа, определив ее и измерив феноменологически. Здесь и начались те дефекты внутреннего совершенства классической физики, которые перечислил Эйнштейн в своей автобиографии (для этого и были там введены указанные понятия внешнего оправдания и внутреннего совершенства) и которые были основанием для перехода к неклассической картине мира.

Там, где Ньютон отходил от приложенной к телу заданной силы и переходил к ее происхождению, сразу же появлялись неоднозначные, противоречивые, явно неудовлетворительные понятия первого толчка, действия на расстоянии, а также понятия абсолютного простран

452

ства и времени. Они появлялись вместе с попытками отказаться от дальнейшего анализа, ведущего к гипотетическим построениям, но сейчас, когда мы знаем, как впоследствии были решены наметившиеся коллизии, нас интересует их гносеологическая характеристика. Она состоит в следующем. Однозначность ньютоновых законов (сохранившихся в классической аппроксимации в качестве "ограниченно годных" и поныне) свидетельствует об исторической необратимости познания, о необратимости и растущей точности результатов познания. То, что называют "шуйцей" Ньютона, - неоднозначность в оптике, в проблеме действия на расстоянии, первого толчка и т.д. демонстрирует продолжение познания, его неисчерпаемость, сохранение вопросов как инварианта познания. В этом - основной гносеологический итог ньютоновского динамизма. Когда вопрос: "почему тело движется?" перешел в вопрос: "что такое сила?", он не был снят, он сохранился в более сложной форме.

Нельзя рассматривать в качестве итогов научной революции XVI-XVII вв. только позитивные констатации, прочно вошедшие в науку. Выше уже говорилось о неотделимости позитивных ответов, гарантирующих необратимое направление научного прогресса, и нерешенных вопросов, гарантирующих дальнейшее движение в этом направлении. Это соотношение можно видеть в истории закона всемирного тяготения. Он был ответом на вопрос, поставленный открытием эллиптического движения планет. После открытия эллиптической формы орбит, после законов Кеплера возникла столь характерная для научных революций коллизия: внешнее оправдание, наблюдения Кеплера, не могли быть логически выведены из картины мира, сложившейся в первой половине XVII в. Ни система Галилея, не включавшая тяготения и исходившая из круговых движений планет, ни вихри Декарта не могли, естественно, без выдвинутых ad hoc искусственных конструкций обосновать законы Кеплера. Их объяснением была концепция Ньютона. Но далее понадобилась более общая перестройка науки. Позитивная и однозначная концепция тяготения была создана только в XX в. Общая теория относительности объяснила с высоким внутренним совершенством и равенство тяжелой и инертной массы и ряд других, чисто феноменологических посылок теории тяготения. Действие на расстоянии, явно