Добавить в цитаты Настройки чтения

Страница 5 из 10

Опыт с лазерными указками демонстрирует явление полного отражения на границе между водой и воздухом. Луч, падающий на поверхность воды под небольшим углом α (зеленый), подвергается лишь частичному отражению: часть энергии покидает воду с преломленным лучом, и на экране появляется световое пятно. Скользящий луч (красный) испытывает полное внутреннее отражение

5. Пример изменения скорости звука с в океане в зависимости от глубины. В результате повышения давления и понижения температуры по мере приближения ко дну скорость достигает минимума на глубине zm, чаще всего около 1000 м

Когда звук распространяется зигзагами

Теперь рассмотрим звуковой луч, источник которого находится на глубине zm. Независимо от того, пойдет ли он вверх или вниз, в области, в которой он оказывается, скорость звука выше, чем на оси. Таким образом, в результате последовательного прохождения слоев воды на своем пути звуковой луч постепенно искривляется, вплоть до скользящего падения под таким углом, для которого происходит полное отражение (см. врезку). Тогда он начинает искривляться в направлении увеличения (или уменьшения) глубины, пока снова не достигнет глубины zm, где изменение скорости звука меняет знак. Таким образом, луч движется по зигзагообразной траектории между двумя плоскостями (илл. 6).

Эти две плоскости эквивалентны верхней и нижней границам волновода, у которого нет боковых стенок. Тем не менее благодаря описанному явлению звук способен распространяться в океане на большие расстояния. Наконец-то мы закончили расследование!

Не все исходящие из источника звуковые лучи попадают в этот «океанический волновод». Первоначально звук из источника распространяется во всех направлениях, и превращение его в «звуковой луч» зависит от угла, образующегося между ним и вертикалью. Если этот угол достаточно велик, то звуковой луч распространяется безгранично. Если же угол слишком мал, звуковой луч достигнет поверхности или дна океана. Но дно океана неровное, и оно, как и поверхность (кроме редких моментов, когда она совершенно спокойна), рассеивает звук. Таким образом, море, как правило, может послужить волноводом только для звуковых лучей, которые не достигают ни поверхности, ни дна океана. На практике существуют «акустические каналы», по которым звук передается на большие расстояния, и «теневые зоны», куда звук никогда не попадает.

Распространение звука в газах или жидкостях представляет собой возмущение, периодически изменяющее в пространстве и времени плотность частиц, эту среду составляющих. Любой выделенный объем жидкости локально подвергается периодической череде сжатий и расширений.





Скорость звука в жидкостях и твердых телах, вообще говоря, выше, чем в газах. Это и не удивительно, ведь в вакууме звук не распространяется вообще, а разреженный газ имеет плотность промежуточную между вакуумом и конденсированным веществом. Однако если скорость звука в двух средах сильно отличается, то передача звука из одной в другую может быть затруднена. Это явление используется в стетоскопе – инструменте, который доносит в ухо врача звуки из грудной клетки пациента. Первоначально он представлял собой простую деревянную трубку.

Другой пример волновода, основанного на явлении полного отражения, которое возникает при переходе звука из воздуха в твердое тело, – это старинная система акустических труб, соединяющая различные уровни на кораблях. Сделанная обычно из меди или латуни, она передает приказ с капитанского мостика в машинное отделение. В таком волноводе волна практически одномерна – это означает, что интенсивность звуковой волны остается постоянной по всей длине трубы, даже на удалении от источника. Затухание звука в воздухе настолько низкое, что, если бы можно было построить прямую трубку длиной 750 км и избежать поглощения звука стенками, она послужила бы телефоном между Парижем и Марселем. К сожалению, скорость звука в воздухе составляет всего 340 м/с, так что слова из Парижа в Марсель добирались бы более получаса…

Изучение распространения звука в океанах серьезно интересовало британских и американских ученых во время Второй мировой войны. Тогда речь шла об обнаружении немецких подводных лодок раньше, чем они подплывут достаточно близко, чтобы атаковать американские или английские суда. Акустическое обнаружение подводных лодок с помощью сонаров сыграло важную роль в битве за Атлантику: в 1943 году, после тяжелых потерь, союзники сумели уничтожить значительное количество немецких подлодок, установив тем самым свое превосходство на море.

6. Акустический луч (красный), излучаемый на глубине zm, проходит между двумя плоскостями, от которых он полностью отражается. Зависимость скорости звука от глубины c (z) в океане представлена зеленой кривой. Значения z1 и z2 (считаем, что глубина равна 0 на поверхности) зависят от угла падения луча на глубине zm и определяются законом Снеллиуса: c (z1) = c (z2) = cm/sin α (zm)

Интересно рассмотреть случай, когда скорость звука c – простая функция глубины z. Например, функция, имеющая минимум в zm: c (z) = c (zm) + k (z – zm) 2, где k – константа. В этом случае кривая, иллюстрирующая изменение скорости звука в зависимости от глубины (зеленая на илл. 5 и 6), является параболой. На самом деле это приближение почти всегда справедливо для глубин z, близких к zm. Звуковой луч, немного отклоняющийся от горизонтали, следует по синусоиде, период которой не зависит от угла падения, так что все звуковые лучи в одной вертикальной плоскости сходятся в точках оси z = zm (илл. 7). Эти точки аналогичны фокусам оптических приборов, таких как линзы, в которых сходятся падающие световые лучи, поэтому наблюдается явление фокусировки звуковых волн. Параболическая форма кривой хорошо описывает изменение скорости звука в зависимости от частоты в глубинах океана. Однако, поскольку кривая c (z) на практике не является параболой, то фокусировка звука не идеальна.

Когда звук излучается на соответствующей глубине в море, значительная часть звуковой энергии оказывается заперта в «акустических каналах». Достаточное ли это объяснение для прохождения звука от Австралии до Бермудских островов? Попробуем подсчитать. Хотя рассмотренный нами механизм описывает именно распространение звука в океане, остаются возможными еще два направления. Звуковая волна, излучаемая в середине океана, проходит в течение времени t расстояние R порядка сзв. t, где сзв. – средняя скорость звука в воде, скажем, 1500 м/с. Даже если предполагается, что потери равны нулю, энергия звуковой волны должна распределяться по всей, примерно цилиндрической, поверхности зоны 2πRh, где разница в глубине h между верхней и нижней границами канала может достигать глубины океана. Таким образом, интенсивность звука уменьшается как 1/R по мере удаления от источника. Это происходит не так резко, как затухание, пропорциональное 1/R2 звука в воздухе (илл. 3), но и оно едва ли оставляет надежду на то, что звук, раздавшийся в Австралии, будет услышан на Бермудах. Однако если приемник звука находился в точке фокуса, где сходятся звуковые лучи (илл. 7), а величина h невелика, то в принципе отголосок взрыва мог быть услышан. Кроме того, можно допустить, что колебания солености и температуры в толще океана на пути звуковых лучей создают и вертикальные отражающие стенки, препятствующие рассеянию энергии звуковой волны. И все же удивительно, что звук достигает Бермудских островов в обход мыса Доброй Надежды, учитывая дополнительное поглощение энергии, например, пузырьками воздуха или планктоном.