Страница 2 из 10
Глава 1
Реки, меандры и озера
Течение воды в реке – сложный процесс, который происходит в неоднородной среде. Хотя наука не объясняет всех нюансов ее движения, она дает ключ к пониманию основных свойств этого явления.
Сколько раз, гуляя по тропе вдоль ручья или реки, мы задавались вопросом: почему поток вместо кратчайшего пути (прямой линии) петляет из стороны в сторону? Конечно, некоторые его части почти прямые – из-за особенностей рельефа местности или проложенного человеком русла. Однако, когда водный поток свободно распространяется по равнине, обычно он вырисовывает петли и изгибы. Иногда образующиеся петли повторяются относительно регулярно (илл. 1). Как объяснить появление этих излучин, или меандров?
Чаинки в чашке…
Одним из первых, кто задумался о причинах формирования этих изгибов, был Альберт Эйнштейн. В 1926 году он представил Прусской академии наук доклад без каких-либо уравнений, озаглавленный «Причины образования извилин в руслах рек и так называемый закон Бэра». В чем же суть этого знаменитого закона? Основываясь на наблюдениях выдающихся географов XIX века, естествоиспытатель Карл Бэр пришел к выводу, что в Северном полушарии, в равнинной местности, правый берег рек обычно более крут, чем левый, а в Южном полушарии все наоборот: левый берег круче правого.
Прежде чем перейти к изучению излучин рек и формы берегов, Эйнштейн предлагает поставить небольшой опыт, воспроизводящий повседневное привычное нам действие: размешать ложечкой сахар в чашке чая. В этом эксперименте Эйнштейна заинтересовало явление, которое на первый взгляд кажется противоречащим здравому смыслу: вызываемое ложкой вращение жидкости создает вертикальные вихри (илл. 2). Чтобы их увидеть, Эйнштейн добавляет в воду чаинки. При размешивании жидкости ложкой видно, что чаинки собираются в центре дна чашки (илл. 3). Предлагаем читателю убедиться в этом самостоятельно!
1. Излучины реки Снейк («Змея»), США
Вот как Эйнштейн объясняет это явление: в результате вращения на жидкость действует центробежная сила, отбрасывающая ее от оси вращения, и она тем сильнее, чем быстрее вращение (см. главу 4, «Еще одна фиктивная сила: центробежная»). У стенок чашки жидкость тормозится трением, поэтому вращается немного медленнее, чем в центре чашки. «В частности, – добавляет Эйнштейн, – угловая скорость вращения, а следовательно, и центробежная сила у дна чашки меньше, чем у краев. Таким образом возникает циркуляция жидкости, показанная на илл. 2, которая и заставляет чаинки собираться в центре чашки».
2. При размешивании воды в чашке ложечкой в жидкости образуются вертикальные вихри
3. Опыт Эйнштейна. Воду с чаинками размешивают ложечкой (а). Вскоре чаинки собираются в центре стакана (b) и в конечном итоге опускаются на дно (c). Их движение доказывает наличие вертикальных вихрей, хотя их существование, кажется, противоречит интуиции
4. Циркуляция воды на изгибе реки по Эйнштейну. Центробежная сила, направленная от внутреннего берега к внешнему, действует в каждой точке жидкости. Но вблизи дна ее действие уменьшается из-за трения, и в основном потоке возникает вертикальная циркуляция. Она захватывает песок с внешнего берега и относит во внутреннюю часть меандра
Как меняется русло рек?
Теперь проанализируем движение воды в той части реки, где она образует излучину. Оно аналогично движению воды в чашке, отмечает Эйнштейн. Так же как жидкость в ходе эксперимента тормозилась стенками чашки, скорость потока уменьшается трением в непосредственной близости от дна: таким образом, центробежная сила, направленная наружу от поворота, здесь меньше, чем у поверхности. Таким образом, возникает вертикальная циркуляция, обращенная во внешнюю сторону излучины около поверхности и внутрь вблизи дна (илл. 4).
Это завихрение переносит внутрь изгиба землю и гальку, которые вымывает из внешнего берега. На внутреннем берегу образуется намыв точно так же, как возникал «нанос» чаинок в центре дна чашки в предыдущем опыте. В обоих случаях, когда вода поднимается и под действием силы тяжести оставляет все, что влекла за собой, происходит осаждение. Эрозия внешнего берега и намыв на внутреннем берегу постепенно превращают едва заметный изгиб в меандр с крутым внешним и пологим внутренним берегом. Вследствие продолжающейся эрозии русло реки, скорее всего, в конце концов сольется у начала и конца изгиба и возникнет остров (илл. 5 и 6).
5. Изгиб реки, поначалу умеренный (1), постепенно увеличивается, образуя излучину с отложением нанесенного песка на внутреннем берегу (2), а затем приводит к образованию острова или озера в форме подковы (3)
Вышеизложенные соображения делают понятным различие между формой внешнего и внутреннего берегов в излучине, но это еще не все. Как объяснить закон Бэра, согласно которому формы правого и левого берегов различны не только на излучинах? И как объяснить наблюдения географов, которые указывают, что в Северном и Южном полушариях крутость берегов противоположна? Читатель уже догадывается, что здесь, вероятно, играет важную роль вращение Земли, мы вернемся к нему в главе 4, «Возвращение к закону Бэра».
6. Меандр Сены в Лез-Андели, вид на замок Шато-Гайар и остров. Внешний берег крутой, а внутренний – пологий
Какую форму принимают меандры?
Форма русла реки во многом зависит от рельефа местности, по которой река протекает. В районе с неоднородным ландшафтом река петляет, избегая неровностей и выбирая путь с наибольшим уклоном. Но и на равнине прямолинейность русла не сохраняется. Небольшой обвал земли или падение дерева на берегу заставляют поток образовать изгиб, который может постепенно увеличиваться, образуя меандр в соответствии с описанным выше процессом.
Какую именно форму обычно принимают меандры реки, текущей по равнине? В 1960-х годах геологи пришли к выводу, что каждая извилина имеет специфическую форму – такую, которую принимает гибкий стержень, если его согнуть, приблизив концы друг к другу (илл. 7). Она представляет собой эйлерову кривую, названную так в честь швейцарского математика Леонарда Эйлера (1707–1783), который первым решил эту задачу. Работа Эйлера по-прежнему широко цитируется в руководствах о прочности балок – те начинают изгибаться, если слишком сильно надавить на их концы (см. врезку в главе 1, «Опыт с продольным изгибом»).
7. Форма, принимаемая упругим стержнем, концы которого зафиксированы в A и B, называется кривой Эйлера. Угол Ѳ между касательной и прямой AB позволяет определить кривизну dѲ/ds, производную от Ѳ относительно пути, пройденного по кривой. Эйлерова кривая минимизирует среднюю квадратичную кривизну стержня, то есть минимизирует интеграл ∫(dѲ/ds)2ds, где Ѳ – угол между касательной и некоторым выбранным направлением, а s – длина вдоль кривой. Интеграл берется вдоль всего стержня