Добавить в цитаты Настройки чтения

Страница 20 из 37



Согласно СТЭ, такое если вообще может быть, то только как крайне редкое случайное совпадение. Но всевозможные “-зации” оказались слишком частыми и слишком синхронными, чтобы их можно было списать на чистую случайность.

Разумеется, эти факты не прошли мимо внимания оппонентов дарвинизма, особенно из числа приверженцев номогенеза (см. главу 5) или телеологических эволюционных концепций. Они как будто бы прямо подтверждали, что эволюция (по крайней мере, макроэволюция – формирование и развитие крупных групп) – процесс закономерный и целенаправленный. Проблема, однако, заключалась в том, что ни одна из альтернативных дарвинизму эволюционных теорий не могла ни предложить механизмы, обеспечивающие направленность эволюции, ни хотя бы четко сформулировать ее “закономерности” и “цели”. Да и как их сформулируешь, если в одних и тех же группах некоторые виды вступают в очередную “-зацию”, а другие меняются совсем в других направлениях – или почти не меняются вообще? Мы говорили, что среди разных “бабочек” мелового периода были представители отрядов сетчатокрылых и скорпионниц. Оба эти отряда существуют и ныне, хотя их разнообразие и экологическая роль довольно скромны. Современных сетчатокрылых читатели, живущие в средней полосе и далекие от биологии, могут знать по златоглазкам – нежным зеленым созданиям с отливающими золотом глазами, которые летними вечерами кружат вокруг лампы, беззвучно трепеща своими четырьмя крыльями. Современных скорпионниц почти наверняка видел всякий дачник – это довольно крупные насекомые с пестрыми крыльями, немного похожие на комаров-долгоножек, но с задранным кверху концом брюшка (за что эти совершенно безобидные существа и получили свое грозное имя). Ни те, ни другие совсем не похожи на настоящих бабочек, на которых так походили их вымершие родичи.

То же самое можно сказать и о кистеперых рыбах – пока несколько групп этого надотряда соревновались за право стать амфибиями, другие (зачастую представители тех же самых семейств) оставались рыбами и в таком состоянии прожили более 300 миллионов лет – естественно, претерпевая собственную эволюцию. В частности, в начале мезозоя часть кистеперых (сформировавшихся как обитатели мелководий и пересыхающих водоемов, преимущественно пресных) ушла в море. Там и сохранился до наших дней единственный современный род кистеперых – знаменитая латимерия: оба современных вида этих рыб обитают в тропических морях, держась в основном на глубинах в сотни метров. Ни предполагаемая “цель” эволюции группы, ни “тенденции” или “закономерности” на большинство видов кистеперых почему-то не подействовали.

“Наши недостатки – продолжение наших достоинств”

А чем параллелизмы не укладываются в ту картину эволюции, которую рисует СТЭ? Мы уже говорили, что в рамках ее представлений всякий акт видообразования – результат взаимодействия множества факторов, большинство из которых (точнее, все, кроме отбора) случайны и ненаправленны. Поэтому один вид не может возникнуть дважды – даже от одной и той же исходной формы и в одних и тех же условиях. К этому следует добавить, что, согласно СТЭ, механизм образования родов, семейств и более высокоранговых таксонов ничем принципиально не отличается от видообразования: род – это потомки одного исходного вида, семейство – потомки одного рода и т. д.

А значит, все, что справедливо для процесса видообразования, справедливо и для эволюции вообще[62]. Иными словами, возникновение каждой крупной группы живых существ – типа, класса и т. д. – должно быть так же уникально и неповторимо, как и видообразование, и каждая такая группа должна быть строго монофилетичной, то есть происходить от одного-единственного конкретного вида. С этой точки зрения всякая конвергенция, то есть независимое приобретение разными группами сходных черт, представляется явлением редким, нетипичным и, как правило, более или менее поверхностным: скажем, передние конечности крота и медведки внешне похожи друг на друга (что обусловлено их практически одинаковой функцией), но анатомически не имеют между собой ничего общего. Независимое же приобретение разными группами нескольких не связанных друг с другом признаков с точки зрения СТЭ равносильно чуду.

И это не единственное допущение, подразумеваемое СТЭ, но редко высказываемое явно при ее изложении и еще реже становящееся предметом критического обсуждения. Возможно, внимательные читатели даже по приведенному выше краткому изложению заметили, что СТЭ фактически рассматривает организм как набор признаков, каждый из которых эволюционирует словно бы независимо от прочих. При этом признак мыслится тождественным тому гену или генам, которые вовлечены в его формирование. Получается, что между геном и отбором словно бы ничего и нет. Конечно, любой эволюционистсинтетист, хоть разбуди его среди ночи, без запинки отчеканит все необходимые оговорки: что наследуются гены, а отбор действует на фенотипы, что фенотип не определяется однозначно генотипом, что сравнительная адаптивность разных вариантов гена зависит, помимо всего прочего, от “генетического окружения” и т. д.[63] Однако в реальных исследованиях, не говоря уж о моделях, все эти “тонкости” обычно игнорируются.

Само по себе использование упрощений и упрощенных моделей для теории не порок – это стандартный методологический прием, без применения которого наука вряд ли могла бы разобраться в сколько-нибудь сложных явлениях. Но у него всегда есть оборотная сторона – пресловутые “сферические кони в вакууме”, чрезмерные упрощения, лишающие модель какой бы то ни было познавательной ценности. Причем если из такой модели следуют выводы, прямо противоречащие наблюдаемым фактам, – это еще полбеды: в этом случае неадекватность модели сразу будет замечена, и ее скорректируют, а если это не поможет, просто отбросят. Порой гораздо худшие последствия имеет ситуация, когда упрощенная модель успешно объясняет некоторую часть явлений (наиболее простые случаи), создавая при этом впечатление, что со временем она сможет объяснить все.

Вернувшись мысленно к изложению основных положений СТЭ, мы можем заметить, что во всех рассматриваемых ею процессах действует либо один вид, либо два только что отделившихся друг от друга (или даже еще не завершивших это разделение) вида. Разумеется, никто в здравом уме не отрицает, что любой вид существует и эволюционирует, сложным образом взаимодействуя со множеством других видов (хищниками, жертвами, конкурентами, симбионтами и т. д.), что все они так или иначе посредством этих взаимодействий влияют на его эволюцию, а он – на их. Но теоретических инструментов для рассмотрения такого влияния в понятийном аппарате СТЭ по сути дела нет. Чаще всего все виды, кроме того, который находится в центре внимания, рассматриваются просто как элементы внешней среды, а обратное влияние на них изучаемого вида просто игнорируется. В наилучшем случае предметом рассмотрения становятся попарные взаимодействия: “эволюционная гонка вооружений” между хищником и жертвой или между паразитом и хозяином, взаимные приспособления опылителя и опыляемого растения, раздел “сфер интересов” между видами-конкурентами и т. д.

Но, может быть, и в этом нет ничего плохого? Рассмотрим эволюцию каждого вида в отдельности, рассмотрим попарные связи между ними, а потом, когда наше понимание этих процессов будет достаточно полным, попытаемся из них, как из деталей конструктора, собрать общую картину эволюции. Почему бы и нет?

При таком рассмотрении, однако, некоторые интересные и важные эволюционные феномены автоматически оказываются за пределами поля зрения – у теории, идущей “от элементов”, просто нет возможности их увидеть и нет понятий, чтобы их описать. Примером такого важнейшего эволюционного явления, оставшегося за бортом СТЭ (да и вообще эволюционной теории), можно считать феномен симбиоза и особенно его предельный случай – симбиогенез, превращение сообщества организмов разных видов в единый суперорганизм. Еще в 1869 году (заметим: во времена первого триумфа теории Дарвина и попыток приложить ее буквально ко всем явлениям – не только в биологии, но и в истории, социологии, лингвистике и даже в термодинамике) русский ботаник Андрей Фаминцын установил, что лишайники представляют собой “составную конструкцию” из клеток гриба и водоросли, но при этом ведут себя как целостный организм[64]. Впоследствии было обнаружено немало столь же тесных симбиозов: зеленые растения и бактерии-азотфиксаторы, деревья и грибы, морские сидячие животные и водоросли[65], копытные и разлагающие целлюлозу бактерии, лимонные муравьи и дерево-муравейник дуройя… Но в полной мере эволюционный потенциал феномена симбиоза обозначился только во второй половине 1960-х годов (снова заметим: во время завершения формирования СТЭ и ее максимальной популярности), когда американская исследовательница Линн Маргулис выдвинула идею симбиотического происхождения внутриклеточных органелл (митохондрий и хлоропластов) и в конечном счете – эукариотной клетки как таковой[66]. Позднее, когда прямые сравнения митохондриальных и бактериальных геномов полностью подтвердили гипотезу Маргулис, стало ясно, что сим-биогенез – не редкий курьез, а один из самых важных и плодотворных путей эволюции.



62

О том, насколько справедливо и полно такое представление, мы поговорим в главе 15.

63

И это не всегда остается лишь ритуальными словами. Например, одно из самых красивых достижений СТЭ – анализ феномена так называемого “сбалансированного генетического полиморфизма”, парадоксальной ситуации, когда вредная и даже приводящая к смерти мутация может не только сохраняться в популяции неограниченно долго, но и получать довольно широкое распространение. Классический пример этого явления – мутация, вызывающая у людей серповидно-клеточную анемию. Ребенок, у которого обе копии гена несут эту мутацию, обречен умереть в первые годы жизни – его кровь не справляется с переносом кислорода. Но гетерозиготы по этой мутации (то есть те, у кого одна копия гена мутантная, а другая – нормальная) имеют огромное преимущество: в их эритроцитах не может жить возбудитель малярии. В результате в некоторых местностях большинство коренных жителей оказываются носителями этой мутации – смертоносной и спасительной одновременно.

64

Согласно современным исследованиям, во многих (если не в большинстве) лишайников присутствуют два разных вида грибов. Один из них образует мицелий (многоклеточную грибную ткань), служащий основой “тела” лишайника – таллома. Другой гриб подобен дрожжам: его клетки не соединяются друг с другом, но при этом они необходимы для взаимодействия “талломного” гриба и водоросли. Эти результаты, помимо всего прочего, означают, что простая и наглядная модель возникновения лишайника (захват грибным мицелием водорослевых клеток) вряд ли соответствует действительности или, по крайней мере, справедлива далеко не для всех видов лишайников. Видимо, этот симбиоз формировался каким-то более сложным путем.

65

Только один пример того, как участие в симбиозе может изменить направление эволюции: предки самого большого в мире двустворчатого моллюска – гигантской тридакны – когда-то имели довольно развитые глаза, но полностью утратили их при переходе к фактически сидячему образу жизни. Однако позднее тридакна вновь обзавелась примитивными простыми глазками, которые она использует для наилучшего “экспонирования” на свету частей своего тела, заселенных симбионтами – одноклеточными водорослями.

66

Идею симбиотического происхождения хлоропластов выдвигали еще Фаминцын и его коллега Константин Мережковский; наиболее глубоко ее разработал известный советский ботаник Борис Козо-Полянский. Однако к 1960-м годам эти гипотезы были прочно забыты, и Маргулис ничего не знала о своих русских предшественниках. К чести исследовательницы, узнав о них, она не только официально признала их приоритет, но и организовала издание английского перевода книги Козо-Полянского.