Страница 3 из 5
Дело в том, что в той системе, где неожиданное вредное явление произошло,
информация о его причинах обычно отсутствует!
Традиционные методы анализа негативных явлений (в частности, принятые в США отраслевые методики FMEA и HAZOP) в таких ситуациях рекомендуют следующее:
• Использование личного опыта специалистов и профессионального опыта, накопленного в компании;
• Привлечение мирового опыта решения подобных проблем.
К сожалению, любой индивидуальный профессиональный опыт ограничивается количеством похожих задач, решенных ранее. Только в очень благополучных и стабильных условиях такого опыта достаточно.
С профессиональным опытом есть еще одна проблема. Традиционные методики анализа причин вреда не располагают эффективными аналитическими инструментами для выявления сходства различных, на первый взгляд, аварий. Сходства и не находят, за исключением самых очевидных случаев. В результате каждая новая проблема выглядит уникальной, и толстые «журналы сбоев», хранящие всю историю проблем и решений на предприятии, оказываются бесполезными.
Мировой же информационный фонд подобных задач, как правило, очень беден – никто не спешит сообщать широкой публике о своих авариях и дефектах.
Поэтому:
система, в которой что-то произошло, всегда оказывается областью очень скудной информации.
В этой книге будет показано, как, благодаря Инверсионному Методу, брак из вертолетостроения может найти свое объяснение в народных промыслах, а металлургическая проблема разрешится благодаря подсказке из области электроники.
Эти утверждения, конечно, звучат необычно – ни в одной традиционной методике вы ничего подобного не найдете, но здесь они будут доказаны и подтверждены фактами.
Что такое Денайл и как с ним быть
Когда мы пытаемся найти информацию о каком-либо вредном явлении, мы сталкиваемся с феноменом, получившим в США название «Denial», что в переводе, означает непризнание, отрицание, нежелание осознавать.
Такая психологическая реакция свойственна людям вне зависимости от традиций и культуры. Она заставляет нас избегать неприятных мыслей и новостей: «у нас такого случиться не может», «все будет хорошо», «раньше не случалось, значит, и угрозы никакой нет» и т. п.
В обществе, почитающем успех, мы привыкаем скрывать свои неудачи, прошлые ошибки, проблемы в семье и со здоровьем; не любим быть гонцами плохих известий. А в профессиональной среде существует особый информационный барьер – не каждый решится обсуждать предмет, не имея о нем полной ясности.
Недавний выпускник инженерного вуза на своём рабочем месте в цеху или оператор на конвейере – это именно те люди, которые, чаще всего оказываются прямыми свидетелями аварии. Такой свидетель владеет бесценной информацией о том, «как оно было на самом деле». Но, простой оператор скорее всего, будет помалкивать потому, что «мы здесь, а начальство далеко». А молодой инженер, если его пригласили участвовать в обсуждении аварии, не имея полного объяснения случившемуся, воздержится от высказываний, чтоб не выглядеть «непрофессионально» в глазах коллег.
А ещё, в связи с авариями или браком, существует проблема ответственности. Некоторые люди сознательно утаивают информацию, чтоб не повредить репутации отдела, фирмы или своей собственной.
Как-то меня и моих коллег пригласили в одно из отделений компании Форд в качестве консультантов для выявления причин брака. Мы шли по длинному коридору служебного здания в комнату, где нас ждала группа инженеров, занимавшихся проблемой.
Когда дверь открылась, сразу стало ясно, что мы не ошиблись – по позам и выражениям лиц людей, сидевших вокруг овального стола. Здесь не было комфортно расслабленных фигур, улыбок, шутливой, оживлённой дискуссии – типичных признаков инновационного мозгового штурма. В «нашей» комнате мы увидели руки, скрещённые на груди, «закрытые» лица. Никто не разговаривал. Присутствующие, явным образом, больше были озабочены не сказать лишнего, чем свободным обменом мнениями.
По таким примерам мы видим, что в обществе существуют объективные препятствия свободному обмену информацией об авариях и других вредных явлениях. Эти препятствия затрудняют доступ к нужной информации именно тем, кому она особенно важна.
Люди склонны:
избегать разговоров…
не делиться информацией…
скрывать информацию…
…о неприятных вещах…
Необходимо подчеркнуть ещё один аспект ситуации. Традиционные методы анализа вреда предполагают получить прямой ответ на вопрос «Как произошло вредное событие?» Учитывая многофакторное психологическое противодействие таким вопросам, разумно предполагать, что нужного ответа вы, скорее всего, не получите.
В результате,
задачи выявления причин вреда остаются неразрешёнными в течение многих лет.
Может быть, с прогнозом вредных явлений дела обстоят лучше? На первый взгляд, – да! Помимо простого гадания, в мире существует внушительный перечень прогнозных методов, принятых в различных отраслях промышленности, в частности:
• Оценка рисков – Risk Assessment;
• Анализ видов и последствий отказов – Failure Modes and Effects Analysis (FMEA);
• Выявление рисков неработоспособности – Hazard and Operability study (HAZOP);
• Ранний анализ недостатков конструкций – Preliminary Hazard Analysis (PHA);
• Анализ уязвимости – Vulnerability Analysis;
• Метод построения деревьев ошибок – Fault Trees;
• Метод построения деревьев событий – Event Trees;
и других.
На базе опыта, накопленного в соответствующей предметной области, эти методы способны помочь в предсказании некоторых сбоев, отказов, ошибок, недостатков, нежелательного изменения параметров.
Однако,
традиционные методы весьма слабы в разработке прогнозных гипотез и сценариев.
Ни один из них не располагает инструментами для предсказания системного эффекта взаимодействия негативных воздействий, спонтанных количественно-качественных преобразований, лавинообразных процессов. А ведь все это – типичные сценарии развития аварий и катастроф.
В случае FMEA/HAZOP прогноз обычно проводится на базе таблиц, включающих в себя практически один, но многократно повторяемый вопрос:
Что случится, если параметр X возрастет/уменьшится на величину У?
Монотонные вопросы такого рода способны убить всякое воображение, необходимое для создания прогнозного сценария. А чтобы компенсировать явную слабость такого подхода, исследователю предлагается длинный список «всех параметров всех деталей и частей системы», которые необходимо проанализировать.
Увы, природа наша такова, что длинный список однотипных вопросов убивает творческую мысль и еще более затрудняет анализ ситуации.
Поэтому:
традиционные методы аварийного прогноза не способны предсказывать сложные, неочевидные аварии.
Учитывая вышесказанное, практику – производственнику и специалисту по рискам необходим метод, который:
• Обеспечит доступ к информации о реальных причинах вредных явлений;
• Позволит предсказывать, в разумных временных рамках, потенциально вредные явления, которые:
♦ не очевидны;
♦ развиваются скрыто.
Давайте посмотрим, как был создан Инверсионный Метод и почему он способен обеспечить все указанные выше требования.