Добавить в цитаты Настройки чтения

Страница 6 из 7



Какое все это имеет отношение к Солнцу? Ответ достаточно деликатен, но мы уже намекали на это несколько раз по ходу обсуждения раньше. Солнце подпитывается энергией от слияния ядер водорода, которые представляют единичные протоны, в ядра гелия, состоящие из двух протонов и двух нейтронов. Где-то в ходе этого процесса два протона должны обратиться в нейтроны, что делается возможным благодаря слабому ядерному взаимодействию и процессу «обратного бета-распада», упомянутого ранее: протон превращается в нейтрон, испуская при этом нейтрино[26]. В результате Солнце производит невероятное количество нейтрино, которые были обнаружены на Земле, и их измерения дают информацию как о ядерных реакциях в ядре Солнца, так и о свойствах самих нейтрино.

Превращение протонов в нейтроны внутри звезд является существенно важным для существования огромного количества элементов, с которыми мы имеем дело в повседневной жизни – кислород в воздухе, которым мы дышим, и вода, которую мы пьем, углерод в пище, которую мы едим, кремний в земле под нами. Когда очень тяжелая звезда выжигает большую часть водорода в своем ядре, она начинает реакцию слияния гелия в еще более тяжелые элементы. Когда гелия остается мало, очень тяжелые звезды начинают выжигать углерод и так далее по всей Периодической таблице элементов. На каждой стадии этого процесса энергия сильного взаимодействия, высвобождающаяся за счет слияния, уменьшается[27], пока кремний не будет превращаться в железо. Ядерная реакция слияния кремния в железо уже не дает никакой энергии, производство тепла, поддерживающего ядро звезды, останавливается. В этой точке процесса внешние слои звезды обрушиваются внутрь, чтобы произвести взрыв суперновой звезды, высвобождая так много энергии, что взрывающаяся звезда зачастую на некоторое время становится самой яркой в своей галактике.

В суперновой звезде большинство массы вырывается с огромной скоростью наружу в виде расширяющегося облака газа, унося с собой более тяжелые элементы, произведенные в ядре во время поздних стадий слияния. Эти облака газа расширяются, охлаждаются и взаимодействуют с окружающим газом, создавая сырье для следующих поколений звезд, а также скалистых планет, похожих на Землю, которые в основном сделаны из тяжелых элементов, созданных в ядре умирающей звезды.

Невероятное разнообразие веществ, которое мы видим на Земле – скалы и минералы, воздух, – всё построено из пепла мертвых звезд и создано с помощью всех четырех фундаментальных взаимодействий. Начиная с простых облаков водорода, сформировавшихся вскоре после Большого Взрыва, гравитация стягивает газ вместе, электромагнетизм сопротивляется коллапсу и нагревает газ, сильное ядерное взаимодействие освобождает огромное количество энергии в ядерном слиянии, и, наконец, слабое ядерное взаимодействие обеспечивает трансформацию частиц, превращает водород в более тяжелые и интересные элементы. Уберите хотя бы одно из этих фундаментальных взаимодействий, и наше повседневное существование станет невозможным.

Продолжение истории

Описанное выше ни в коем случае нельзя считать полной историей фундаментальной физики. Четыре фундаментальных взаимодействия, которые питают Солнце энергией, единственные, которые мы знаем, но Стандартная модель включает четыре типа кварков помимо семейств верхних и нижних, которые составляют протоны и нейтроны, а также четыре дополнительных лептона, кроме электрона и электронного нейтрино. Частицы в Стандартной модели также имеют эквиваленты из антиматерии – частицы с такой же массой, но противоположным зарядом. Когда частица встречает своего двойника из антиматерии, они взаимно уничтожаются (аннигилируют), превращая их массу в высокоэнергетические фотоны света.

Существование всех этих частиц было экспериментально подтверждено, и их свойства изучены очень детально. Однако ни одна из этих дополнительных частиц не «живет» слишком долго. Самая длительная по времени существования частица – наверное, мюон со средней продолжительностью жизни около двух миллионных секунды, поэтому их влияние на повседневное бытие весьма минимально. Они создаются на скоротечный миг в высокоэнергетическом слиянии между более обычными частицами как в земных физических экспериментах, так и в астрофизических событиях. Они очень быстро распадаются на верхний и нижний кварки (обычно в форме протонов и нейтронов), электроны и нейтрино. История их открытия и развитие Стандартной модели восхитительна, но она лежит за пределами нашей книги.

В целях исследования физики повседневных предметов мы можем ограничить себя всего тремя, наиболее знакомыми, материальными частицами: протонами, нейтронами и электронами. Они комбинируются для создания атомов, которые, в свою очередь, создают все, с чем мы взаимодействуем в ходе нашего обычного дня. В терминах фундаментальных взаимодействий типичная утренняя рутина в основном связана с электромагнетизмом, он ответственен за удержание атомов и молекул между собой и объединяет материю и свет.

Стоит помнить, что все четыре взаимодействия, действуя среди кварков и лептонов, требуются для работы нашего самого существенного ежедневного товарища – Солнца.

Глава 2

Нагревательный элемент: Отчаянный трюк Планка

На кухне я наливаю воду для чая, проверяя, светится ли нагревательный элемент, чтобы убедиться, что я спросонок опять не поставил чайник не на ту конфорку…



Красное свечение горячего предмета – один из простейших и наиболее универсальных явлений в физике. Если вы возьмете кусочек любого материала, достаточно горячего, то он начнет светиться сначала красным цветом, потом желтым, потом белым. Цвет зависит только от температуры предмета. Неважно, что за материал был взят – стержень чистого стекла или чугуна, нагретый до той же температуры он будет светиться абсолютно тем же цветом. Метод нагревания также не важен, пропускаете ли вы электрический ток через виток металла, как в моей электрической печке, или помещаете этот виток в раскаленный уголь, цвет горячего металла будет одинаковым при определенной температуре.

Такое простое и универсальное поведение действовало на физиков как валерьянка на котов, потому что оно предполагало, что в основе этого явления должен быть простой и всеобщий принцип. В поздние 1500-е годы Галилео Галилей и Симон Стевин эмпирически продемонстрировали, что различные материалы и гири падают с одинаковым ускорением: Стевин бросал два свинцовых шара, один в десять раз тяжелее, чем другой, с церковной колокольни[28].

Это наблюдение позволило Исааку Ньютону разработать закон всеобщего тяготения в 1600-х годах. Через несколько сотен лет еще одно направление, основанное на том же принципе, вдохновило Альберта Эйнштейна на создание общей теории относительности, которая до сих пор остается нашей лучшей теорией гравитации.

Эйнштейн вспоминал ключевой момент в развитии своей теории – в 1907 год, когда его озарило понимание, что человек, падающий с крыши, будет чувствовать невесомость во время падения. Появилась связь между ускорением и гравитацией, что и является основой общей относительности. Эйнштейн говорил об этом как о «самой счастливой мысли всей своей жизни». Математическая проработка последствия этой счастливой мысли заняла почти восемь лет, но ученый создал одну из величайших и наиболее успешных теорий современной физики.

Универсальное поведение теплового излучения в таком случае представляется похожим на многообещающий источник озарения: на этом явлении хорошо тестировать идеи о распределении энергии в горячих объектах и способах взаимодействия света и материи. К несчастью, в конце 1800-х годов усилия физиков предсказать цвет света, испускаемого горячими предметами при различных температурах, потерпели неудачу.

26

В ходе этого процесса протон также должен либо испустить позитрон (эквивалент электрона в области антиматерии), либо поглотить один из огромного количества электронов, оставшихся от изначального газа, присутствующего в Солнце. Любой из излученных позитронов будет быстро аннигилировать с одним из упомянутых электронов, так что конечный результат для внешнего наблюдателя будет следующим: один протон и один электрон исчезли, оставив один нейтрон и одно нейтрино вместо себя. – Прим. авт.

27

То, что энергии при ядерном слиянии становится все меньше при переходе к более тяжелым элементам, может быть понято в терминах энергии сильного взаимодействия, выступающей в форме массы: энергия требуется для того, чтобы держать двенадцать кварков вместе в ядре гелия, оно существенно меньше чем та, что нужна для четырех отдельных, не связанных между собой протонов. Но по мере увеличения количества частиц прирост энергии уменьшается. Это немного похоже на организационную эффективность группы людей: два человека, которые совместно пользуются помещением, платят за него дешевле, чем один, но добавление соседей по комнате экономит деньги лишь до определенного момента. Расходы на обустройство шестого соседа по комнате могут превысить экономию на квартплате. Таким же образом, энергия, полученная за счет добавления новых частиц к большому ядру, недостаточно велика. – Прим. авт.

28

Эти опыты можно делать, только если оба предмета достаточно плотные, чтобы пренебречь силой сопротивления воздуха. Если вы будете бросать вниз скрепку для бумаги и перо, скрепка будет падать быстро, в то время как перо будет опускаться на землю медленно. Сила гравитации, действующая на них, одинакова, в вакууме они достигли бы земли одновременно, как это было театрально продемонстрировано командиром Дэйвом Скоттом во время миссии «Аполлона-15» на Луну. – Прим. авт.