Страница 7 из 14
Представьте себе, что большие печатные буквы сделаны из гибкого и растяжимого материала, например из проволоки, и их можно распрямлять, растягивать, выводить из плоскости, переворачивать и переносить в другое место. Подобные преобразования называются топологическими. Две буквы называются топологически эквивалентными, если их можно перевести друг в друга такими непрерывными деформациями (не разрешается разрезать или склеивать буквы!). Например, возьмем проволочную букву Г, из нее легко можно сделать буквы С или П, распрямив и согнув по-другому, но нельзя сделать букву О, для этого проволоку нужно спаять или склеить, а эта операция запрещена. По признаку топологической эквивалентности все буквы можно разбить на несколько классов. Буквы Г, З, И, Л, М, П, С относятся к простейшему классу, распрямив, их можно все превратить в отрезок прямой ________. Если распрямить буквы Е, Т, У, Ц, Ч, Ш, Э получатся три отрезка, спаянные одним концом в общей точке и так далее.
[?-4]
Попробуйте разделить все буквы русского алфавита, цифры и буквы английского алфавита на топологические классы эквивалентности (кроме, состоящих из нескольких не соединяющихся элементов, букв Ё, Й, Ы). Для упрощения работы, показаны характеристические фигуры каждого класса для букв русского языка.
Не буквой единой…
Если посмотреть на стандартную клавиатуру компьютера, то главное место на ней занимают буквы русского и английского алфавитов с возможностью переключения с одного алфавита на другой и со строчных букв на прописные. Но это не всё. Для записи речи используются в языке знаки препинания или пунктуации.
Знаки препинания – это элементы письменности, выполняющие вспомогательные функции разделения (выделения) смысловых отрезков текста, предложений, словосочетаний, слов, частей слова, указания на грамматические и логические отношения между словами, указания на коммуникативный тип предложения, его эмоциональную окраску, законченность, а также некоторые иные функции. Знаки препинания, синтаксически оформляющие текст, облегчают его зрительное восприятие и понимание, а при воспроизведении текста вслух помогают осуществить его интонационное оформление (интонация, смысловые паузы, логические ударения).
Какие же знаки мы найдем на клавиатуре, следовательно, и в печатных текстах? Точка, запятая, точка с запятой, двоеточие, многоточие, восклицательный знак, вопросительный знак. Это наиболее распространенные знаки препинания, которые не имеют каких-то модификаций и не требуют особых пояснений. Другие же используемые знаки бывают весьма неоднозначны и требуют некоторых пояснений.
Дефис – короткая черточка для разделения каких-либо слов и переносов, ничем не отбивается от соседних букв. Обратите внимание на разницу в знаке тире и дефиса в данном тексте. Тире стоит между первыми двумя словами текущего абзаца. Оно отбивается пробелами от слов с обеих сторон. Как только мы сделали отбивку пробелами, черточка сразу становится длиннее, хотя набиралась с помощью той же клавиши, что и дефис. Между двумя датами ставится тоже тире, но оно не отбивается пробелами и поэтому зрительно выглядит как дефис (1945-2020), но называется короткое тире.
Богаты в своем разнообразии знаки скобок. Скобки – это чаще всего парные знаки. Обычно первая в паре скобка называется открывающей, а вторая – закрывающей. Самые распространенные виды скобок круглые ( ), квадратные [ ], фигурные { }. Далее существуют скобки угловые. На компьютерной клавиатуре для них нет специальных клавиш, но их можно поставить с помощью имеющихся математических знаков меньше и больше < >. В «вордовском» редакторе формул угловые скобки есть. Можно поставить скобки косые, используя знак косую черту – «слеш», причем есть косая черта с наклоном в ту или иную сторону / /, . Можно поставить скобки прямые, у математиков это будет означать модуль числа | |, или даже двойные прямые скобки || ||.
Скобки широко используются в математике, гораздо шире, нежели в русском языке. Возьмем, например, круглые скобки. В русском языке они употребляются для выделения пояснительного слова или вставного предложения. Непарная закрывающая скобка может использоваться при нумерации пунктов перечисления. Ниже, перечисляя случаи применения круглых скобок в математике, мы одновременно показываем два случая применения их в русском языке.
В математике круглые скобки показывают приоритет математических и логических операций. Кроме того используются для:
1) выделения аргументов функции;
2) записи координат векторов;
3) записи биномиальных коэффициентов;
4) обозначения матриц;
5) обозначения открытого геометрического или числового промежутка;
6) обозначения скалярного произведения векторов и смешанного (тройного) скалярного произведения;
7) обозначения периода в позиционной записи дробной части рационального числа.
Перейдем к скобкам квадратным. В лингвистике их употребляют для обозначения транскрипции (ёж [jош]). Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. «Еще они [скобки] используются в библиографических записях и сносках».
Квадратными скобками в математике обозначается операция взятия целой части числа. Они применяются для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня», для обозначения векторного произведения векторов, для обозначения закрытых промежутков. Квадратные скобки могут использоваться как альтернатива круглым скобкам при записи матриц и векторов. Одинарная квадратная скобка объединяет совокупность уравнений или неравенств.
На компьютерной клавиатуре нет еще двух видов квадратных скобок, которые используются в математике, но знакомы далеко не всем учителям. Это модификации квадратных скобок под названием «пол» и «потолок» для обозначения ближайшего целого, не превосходящего х, и ближайшего целого, не меньшего х, соответственно:
Таких скобок нет на клавиатуре компьютера, но они есть во встроенном в офисный Word редакторе формул, который математики используют для записи формул, содержащихся внутри обычного текста.
Фигурные скобки вообще вотчина математиков. Я даже не знаю, где их используют в русском языке. Фигурными скобками в одних математических текстах обозначается операция взятия дробной части числа, в других – они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. С этим мы уже сталкивались в соответствующем разделе и в текущем изложении примеров применения скобок. Одинарная фигурная скобка объединяет системы уравнений или неравенств, служит для обозначения кусочно-заданной функции.
Прямые скобки используются в математике для обозначения модуля числа или модуля вектора, определителя матрицы:
У остальных скобок более редкое и специфическое использование, поэтому не будем загромождать текст. Скобки могут применяться в паре со скобкой другого вида или удваиваться каждая. Вариантов множество.