Добавить в цитаты Настройки чтения

Страница 2 из 14



Если однажды, сидя в кабинете какого-либо профессора или аспиранта (желательно в одном из колледжей или университетов моего любимого Среднего Запада), я, просматривая книжные полки, увижу там эту книгу, как в свое время увидел потрепанный экземпляр книги Лейва и Марча, значит, мои усилия не пропали зря.

Глава 1

Многомодельное мышление

Мудрость – это умение организовать свой опыт (как опосредованный, так и непосредственный) и знания на матрице различных моделей.

Это книга о моделях. В ней просто и понятно описываются десятки моделей и способы их применения. Модели – это формальные структуры, представленные в виде математических формул и диаграмм, которые помогают нам понять этот мир. Их освоение улучшает способность рассуждать, объяснять, разрабатывать, коммуницировать, действовать, прогнозировать и исследовать.

В книге рассматривается подход под названием многомодельное мышление: использование совокупности моделей для осмысления сложных явлений. Основная идея состоит в том, что многомодельное мышление порождает мудрость посредством применения разнообразного ансамбля логических структур. Различные модели акцентируются на отдельных причинно-следственных факторах. В итоге их выводы и следствия перекрываются и переплетаются. Используя множество моделей в качестве логических структур, мы добиваемся детального, глубокого понимания происходящего. В книгу включены формальные аргументы, убедительно обосновывающие концепцию множества моделей, а также многочисленные примеры из реальной жизни.

Книга имеет прагматическую направленность, а многомодельное мышление – огромную практическую ценность. Практикуя его, вы сможете лучше понять сложные явления. Научитесь эффективнее выстраивать логические умозаключения. В ваших рассуждениях будет меньше пробелов и вы станете принимать более взвешенные решения в отношении карьеры, общественной деятельности и личной жизни. А возможно, даже обретете мудрость.

Двадцать пять лет назад книга о моделях заинтересовала бы преподавателей и аспирантов, изучающих бизнес, политику и общественные науки, а также финансовых аналитиков, страховых агентов и сотрудников спецслужб. Именно они применяли модели на практике и чаще всего имели дело с большими массивами данных. Сегодня аудитория книги о моделях существенно расширилась – это огромное количество работников умственного труда, которые в связи с появлением больших данных теперь считают работу с моделями частью повседневной жизни.

Организация и интерпретация данных с помощью моделей стала ключевым умением специалистов по бизнес-стратегиям, градостроителей, экономистов, медиков, инженеров, страховых аналитиков и ученых-экологов. Каждый, кто анализирует данные, формирует бизнес-стратегии, распределяет ресурсы, разрабатывает продукты и протоколы или принимает решения о найме, сталкивается с моделями. Следовательно, усвоение материала данной книги (особенно моделей, охватывающих такие области, как инновации, прогнозирование, биннинг данных[2], обучение и расчет времени выхода на рынок) будет иметь для многих практическую ценность.

Многомодельное мышление не просто повысит вашу эффективность на работе, но и сделает вас более достойными гражданами и более вдумчивыми участниками общественной жизни. Благодаря ему вы станете настоящими экспертами в оценке экономических и политических событий. Научитесь обнаруживать изъяны в своей логике и логике других. Сможете определять, когда идеология вытесняет здравый смысл, и выработаете более глубокое, многоуровневое понимание последствий политических инициатив, будь то в отношении зеленых зон или обязательных тестов на наркотики.

Все эти преимущества будут получены в результате использования множества различных моделей – не сотен, а нескольких десятков. Модели, о которых пойдет речь в книге, – хороший базовый набор. Они проистекают из разных дисциплин и включают дилемму заключенного, гонку по нисходящей и модель распространения инфекционных заболеваний SIR. Все эти модели имеют общую форму: они предполагают наличие множества объектов (чаще всего это люди или организации) и описывают взаимодействие между ними.



Представленные в книге модели можно разделить на три категории: упрощенные модели мира, математические аналогии и исследовательские, искусственные конструкции. Какой бы ни была форма, модель должна быть разрешимой, то есть достаточно простой, чтобы в ней можно было применять логику. Например, в книгу включена модель распространения инфекционных заболеваний, позволяющая на основе данных о трех группах людей – инфицированных, восприимчивых к болезни и излечившихся от нее – определять степень распространения болезни, а также вычислять пороговый уровень заражения (переломный момент, после которого болезнь начинает распространяться) и количество людей, которых необходимо вакцинировать, чтобы остановить распространение заболевания.

Однако какими бы действенными ни были отдельные модели, их комбинация позволяет добиться большего, поскольку исключает свойственную им ограниченность. Многомодельный подход проливает свет на белые пятна каждой модели, входящей в комбинацию. Политические решения, принятые на основе одиночных моделей, могут не учитывать важных особенностей окружающего мира, таких как неравенство в распределении доходов, многообразие идентичности и взаимосвязи с другими системами[3]. Использование набора моделей помогает выстраивать логическую интерпретацию множества процессов. Мы видим, как они перекрываются и взаимодействуют, создаем почву для осмысления той сложности, которая присуща нашей экономической, политической и социальной жизни. И делаем это, не поступаясь строгостью, – модельное мышление гарантирует логическую связность. Далее эту логику можно подкрепить фактическими данными, применив к ним модели для проверки, уточнения и совершенствования. В общем, когда наше мышление опирается на последовательную, эмпирически подтвержденную систему координат, это повышает вероятность принятия мудрых решений.

Модели в эпоху данных

Появление книги о моделях может показаться неуместным в эпоху больших данных, которые сегодня характеризуются беспрецедентной размерностью и степенью детализации. Данные о покупках клиентов, раньше поступавшие в виде ежемесячных совокупных показателей, распечатанных на бумаге, теперь представляют непрерывный поток геопространственных, временных и потребительских тегов. Данные об академической успеваемости студентов теперь включают баллы за каждое домашнее задание, работу, тест и экзамен, в отличие от итоговых оценок в конце семестра. В прошлом фермер мог упомянуть о засушливой почве на ежемесячном собрании ассоциации фермеров. Теперь тракторы передают мгновенные данные о состоянии почвы и уровне влажности в расчете на каждый квадратный метр. Инвестиционные компании отслеживают десятки показателей и тенденций по тысячам акций и используют инструменты обработки текстов на естественных языках для синтаксического анализа документов. Врачи могут страница за страницей получать данные из истории болезни пациентов, в том числе важные генетические маркеры.

Всего каких-то двадцать пять лет назад большинство из нас имели доступ к знаниям, размещавшимся на нескольких книжных полках. Возможно, у вас на работе была небольшая библиотека справочной литературы или коллекция энциклопедий и несколько десятков справочников дома. Хотя ученые и исследователи из правительственного и частного сектора имели доступ к большим библиотечным фондам, им все равно приходилось физически их посещать, чтобы получить необходимые материалы. Даже на рубеже нового тысячелетия еще можно было увидеть, как ученые курсируют туда-сюда между библиотечными картотеками, коллекциями микрофильмов, книжными стеллажами и специальными хранилищами в поисках информации.

2

Процесс обработки данных, который преобразует непрерывные данные в дискретные путем замены значений диапазонами. Прим. ред.

3

См., например, книгу Кэти О’Нил (O’Neil, 2016), в которой рассказывается о том, как простые модели, основанные на данных, могут не учитывать некоторые слои населения и адаптивную обратную связь, которую мы обсудим в главе 4.