Добавить в цитаты Настройки чтения

Страница 11 из 17

– интеллектуализация клапанов

– интегрирование клапанов в систему DCS, повышение числа настроечных параметров, объема передаваемых данных

– переход на внешнее сервисное обслуживание.

3. Развитие регулирующих клапанов в составе контуров регулирования

Часто арматуру не рассматривают как существенную часть систем автоматизации, ограничивая названием «звено регулирования» или «исполнительный орган (устройство)». Однако, в зависимости от уровня используемой арматуры, можно либо получить требуемое качество и характеристику регулирования, либо постоянно испытывать проблемы с колебательностью процесса, погрешностью регулирования и т. п.

Ниже мы проведем небольшой экскурс в развитие регулирующей арматуры в составе контуров регулирования и попробуем определить эффективность применения поворотной арматуры в них при замене арматуры с линейно-поступательным перемещением штока.

КОНТУРЫ РЕГУЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ СХЕМ

Первым контуром регулирования был механический контур с регулятором прямого действия с непосредственным регулированием. На многих старых предприятиях еще можно встретить контуры регулирования с использованием рычажных механизмов с механической связью элементов между собой. Рост скорости проводимых процессов с увеличением давления в потоке и требований к быстродействию регуляторов приводил к значительному усложнению, как клапанов, так и конструкций, обеспечивающих их движение. В частности, это проявилось в сложной связи клапана с грузами или пружинами для обеспечения регулирующего воздействия.

Стал более заметен и другой недостаток прямых регуляторов – их неспособность строго поддерживать заданное значение регулируемой величины при различных нагрузках объекта. В дальнейшем этот дефект, названный «статической ошибкой» или «неравномерностью регулирования», так и остался не решенным в рамках механических регуляторов и регуляторов прямого действия. Например, прямой регулятор с мембранным механизмом может иметь ошибку позиционирования до 20% при отсутствии корректирующей обратной связи.

Чтобы улучшить точность регулирования, пытались увеличивать длину рычагов. Однако это приводило к потере устойчивости системы регулирования и появлению расходящихся колебаний регулируемой величины. Видя основную причину во внутреннем трении, конструкторы пытались снизить само трение. Однако это не решало проблемы в связи с тем, что устойчивые процессы с минимальной остаточной неравномерностью регулирования не достигались в рамках пропорционального способа регулирования. Повышения точности систем с пропорциональным способом регулирования не происходило и при использовании многих других конструкторских ухищрений.

Чтобы устранить астатизм в системах регулирования с пропорциональными регуляторами, начали вводиться принудительные виды согласования, в частности, приводы с подводом внешней энергии и корректирующей обратной связью. Корректирующая обратная связь сформировала приемлемый алгоритм функционирования регулятора. Так появился регулятор непрямого действия с внешним подводом энергии для управления контуром, состоящим из измерительного элемента, привода и элементов демпфирования и коррекции, например, пружин в пневмоприводе. В настоящее время его схема широко применяется в аналоговых пропорционально-интегральных (ПИ) регуляторах.





Как видно, пропорциональный (П) регулятор, рассмотренный нами на основе жестких механических связей «свернулся» и стал частью более совершенного ПИ–регулятора, который за счет интегральной составляющей обеспечивает сведение ошибки пропорционального регулирования в установившемся режиме к нулю. Необходимость уменьшения переходных процессов и снижение влияния разгона регулятора при приближении к заданному значению сигнала были разрешены в рамках развития ПИД–регуляторов, использующих при формировании управляющего сигнала дополнительно величину скорости изменения сигнала ошибки.

Хотя названия ПИД, ПИ и П–регуляторов были введены только в 50-х годах, они стали типовыми и в настоящее время также широко используются, наряду с более современными вычислительными алгоритмами. Такой механизм отлично вписывается в человеко-машинную систему, моделируя типовые действия оператора при обнаружении отклонений.

Множество связанных между собой объектов регулирования в рамках регулирования одной регулируемой величины привели к необходимости одновременного расчета нескольких контуров регулирования. В результате стало важным согласовывать связи между различными контурами для реализации закона регулирования по единым протоколам, воспринимаемым всеми элементами многосвязного контура. Такие задачи часто встречаются в тепловых схемах ТЭС.

Переход к сложным многосвязным контурам в свою очередь знаменовал качественно новый этап развития систем регулирования, поскольку речь шла о переходе от регулирования отдельно взятых элементов к комплексному управлению сложным технологическим процессом. Состояние такого процесса характеризуется большим количеством регулируемых величин, имеющих различную природу, и которые постоянно изменяются под воздействием случайных неконтролируемых возмущений.

Возможность строгой синхронизации всех контуров между собой была одной из предпосылок создания непрерывных процессов высокой производительности. Лучше всего в контуре этому отвечали не механические, гидравлические или пневматические связи в контуре, а электрические. Связь между измерительным элементом и клапаном опосредствуется электрическими сигналами, развиваясь по схеме: «Аналоговый сигнал» – «Аналогово-цифровой сигнал» – «Цифровой сигнал». Техническим средством для этого стал переход от электронных ламп к полупроводникам и далее к микросхемам, чипам и мощным микропроцессорам. В дальнейшем, с ростом объема передаваемой информации, ожидается переход на оптико-волоконные системы передачи сигналов, а с развитием промышленной беспроводной связи и переход к сотовой системе. Ряд крупных электростанций за рубежом уже оборудован подобными системами.

Переход с аналогового сигнала на цифровые протоколы на верхнем уровне системы АСУ ТП создали основу для полной «оцифровки» контуров регулирования. С этого момента начинает развиваться информационная составляющая контуров регулирования, заключающаяся как в росте данных для диагностики и ее обработки в рамках контура, так и в увеличении внутренних связей между элементами контура, например, между измерительным элементом и собственно клапаном. Так, в современном цифровом контуре регулирования значительная часть данных обрабатывается внутри контура. Это позволяет значительно упростить связи между нижним уровнем автоматизации и системой управления. На верхний уровень системы автоматизации поступают только данные по отклонениям, заданные системой АСУ ТП. Раньше все эти функции выполнялись непосредственно системой АСУ ТП.

КЛАПАНЫ В КОНТУРАХ РЕГУЛИРОВАНИЯ

Развиваясь под давлением со стороны требований выполнения параметров технологического процесса и особенностей контуров регулирования, регулирующий клапан прошел в своем развитии несколько основных этапов. Сначала, определившись как регулирующий орган для целей техпроцесса, он стал инструментом регулирования.

Из-за невозможности выполнить регулирующую функцию в динамически меняющейся системе быстрое развитие получили приводы с появлением дополнительной вспомогательной подсистемы – гидропневмоприводаэлектропривода. Чтобы управлять движением силового привода, сразу же возникала необходимость установки позиционера, концевых выключателей и других устройств, обеспечивающих синхронизацию движения привода с заданием. Т. е. вместе с приводом регулирующий клапан получил силовую составляющую. Ручной маховик был заменен на управляемый силовой (пневматический, гидравлический, электрический) привод.

С появлением позиционера клапан стал получать команды и регулировать собственные параметры действия (например, снимать рассогласование между отдельными элементами клапана) в соответствии с логикой процесса регулирования. Поскольку позиционер получил возможность включать в себя и информационные инструменты, получать данные от датчиков и преобразовывать собственную диагностическую информацию, получаемую от собственных сенсоров, то он стал в целом и преобразователем информации и имеет возможность предлагать оператору решения на основе обработки внутренней информации. В частности, встроенная программа диагностики FieldCare дает возможность получать тревожные сигналы и тренды о состоянии и вероятном накоплении неисправностей в клапане.