Добавить в цитаты Настройки чтения

Страница 4 из 12

Регулирующие вентили, как правило, используются на линиях с ручным управлением со стабилизированным, установившимся режимом работы. Для выполнения командного сигнала вентили часто приходится делать двухседельными.

Качество регулирования до настоящего времени определяют по классу точности. На отечественных предприятиях используют классы точности 2,5; 4,0; 6,0, см. табл.2.2.

Табл. 2.2. Классы точности регулирующих клапанов

В существующих стандартах класс точности регулирующих клапанов с позиционером должен быть не ниже 2,5. Чтобы проконтролировать соответствие хода регулирующего клапана определяется значения основной погрешности, порога чувствительности и вариации хода штока. Эти параметры оцениваются по ходовой характеристике регулирующего клапана на полностью собранном и отрегулированном изделии при незаполненном средой корпусе и сальнике, обеспечивающем герметичность подвижного соединения штока при условном давлении Ру. Пневматический сигнал при этом проверяется с точностью +– 0,4% от максимального значения, перемещение – с точностью +-0,5% от номинального хода штока.

Основная погрешность регулирующего клапана определяется следующим образом. На входной штуцер мембранно-исполнительного механизма (МИМ) подают управляющий воздух под определенным давлением. Диапазон изменения управляющего давления разбивают на 8-10 равных частей и при каждом его значении фиксируют положение штока. Испытание проводят при прямом и обратном ходе; для каждого значения управляющего давления находят приведенный ход, после чего определяют разность действительного и приведенного ходов.

Основную погрешность определяют как отношение, выраженное в процентах, наибольшей разности действительного и приведенного хода к номинальному ходу штока.

Δ=(Sд – Sп)Sн)х100%

Порог чувствительности определяют при значении управляющего давления, равном 20, 50 и 80% от его полного диапазона. При испытании давление плавно увеличивают до установленного значения, фиксируют его и затем плавно повышают управляющее давление до заметного трогания штока регулирующего клапана. Новое значение управляющего давления фиксируют, а затем определяют разность зафиксированных значений. Испытание повторяют при плавном уменьшении управляющего давления и определяют новую разность зафиксированных значений. Порог чувствительности определяется как отношение, выраженное в процентах изменения управляющего давления, вызывающего заметное трогание штока к диапазону управляющего давления.

Вариации хода штока (Гистерезис). При каждом значении управляющего давления находят разность между действительными значениями прямого и обратного ходов штока. Вариацию определяют как отношение, выраженное в процентах, наибольшей разности между значениями прямого и обратного ходов штока при одном и том же значении управляющего давления к номинальному ходу.

Наибольшее распространение среди регулирующих клапанов с линейным движением штока занимают регулирующие двухседельные вентили с мембранным исполнительным механизмом. Допустимый порог чувствительности таких клапанов с МИМ составляет не более 3Па. Пропускная характеристика может быть, как линейная, так и равнопроцентная. Таблица заменяемости двухседельных клапанов на поворотные шаровые регулирующие клапаны приведена ниже.

Табл. 2.3. Заменяемость двухседельных вентилей на поворотные шаровые краны





– Окончательная возможность замены определяется расчетом.

– Возможность замены угловых клапанов зависит от расчетного перепада давлений.

ПОЗИЦИОНИРОВАНИЕ РЕГУЛИРУЮЩИХ КЛАПАНОВ

Чтобы обеспечить точность выполнения командного сигнала с минимальной погрешностью клапан должен быть спозиционирован. Основной проблемой без применения позиционеров было значительное рассогласование хода штока по отношению к управляющему сигналу.

Позиционер представляет собой устройство, предназначенное для управления перемещением штока строго пропорционально командному давлению путем использования обратной связи по положению штока. Общим принципом работы позиционеров является компенсация усилия в чувствительном элементе позиционера. При этом исключается влияние сил трения, неуравновешенности штока и плунжера и сводится к минимуму рассогласование между командным давлением и действительным ходом плунжера. Если этого не проводить, то рассогласование может достичь 30%, что характерно для мембранных регулирующих вентилей. Пневматические позиционеры позволяют уменьшить рассогласование до 1,5 -2%, снижают запаздывание регулирующих клапанов, поскольку их объем во много раз меньше мембранной камеры МИМ. Основная система управления при этом была пневматическая. Каналы пневмосетей также оставались в значительной степени инерционными. Для повышения качества связи между позиционером и системой автоматического управления, начиная с 60-х годов, широко использовались системы управления, основанные на передаче электрического командного сигнала. В электропневматических позиционерах, работающих на аналоговом принципе электрическое реле переводит пневматический сигнал в электрический. Этим значительно повышаются точность позиционирования. Следующей ступенью стали позиционеры, работающие по протоколу HART, переводящие аналоговый сигнал в цифровой. При этом качество сигнала и помехоустойчивость сетей в значительной степени повысилась. После освоения протоколов HART позиционеры в последнее время появились цифровые позиционеры, например серии ND9000, основанные на преобразовании сигналов от сенсоров в цифровой.

Сам позиционер стал насыщаться сенсорами, поскольку цифровой канал связи обеспечил большие возможности для реализации, как алгоритмов регулирования, так и собственной диагностики.

Интересно отметить, что промежуточной формой внедрения позиционеров и большего перехода к цифровым системам стали цифровые позиционеры, устанавливаемые на регулирующих вентилях с линейным ходом штока и мембранным исполнительным механизмом. В дальнейшем после освоения цифрового позиционера оптимальным является замена регулирующих вентилей с линейным перемещением штока на поворотные регулирующие клапаны. Для вентилей и задвижек с диам. более 100мм требуются специальные рычажные передачи с большим количеством механических звеньев, обязательна ступенчатая регулировка передаточного отношения, поскольку только благодаря этому выходное звено арматуры с линейным ходом штока получает увеличенный ход. Из-за значительного нарастания погрешностей в связи с множеством механических передаточных звеньев, длинного хода штока переход на регулирующие поворотные клапаны с позиционерами оптимально производить с указанного диаметра.

РЕГУЛИРУЮЩИЕ ПОВОРОТНЫЕ ЗАСЛОНКИ

Заслонки регулирующие находят применение вплоть до давлений 6,4МПа, Dу 400мм и предназначаются для регулирования расхода пара при температуре не более 425оС. Их работоспособность ограничивается перепадом давлений на рабочем органе и ранее составлял не более 0,025МПа. В настоящее время при использовании заслонок с эксцентриковым смещением удается значительно повышать допустимый перепад давлений.

ЗАМЕНА РЕГУЛЯТОРОВ ДАВЛЕНИЯ

Регуляторы давления – это автоматическая арматура с линейным движением штока, с чувствительным элементом, которым выступает резиновая мембрана. Формирование силового воздействия осуществляется нагружением грузом или пружиной. Действие регулятора происходит за счет использования энергии рабочей среды, транспортируемой по трубопроводу. При изменении давления на участке трубопровода, настроенная пружина отрабатывает степень открытия регулирующего органа регулятора до тех пор, пока не восстановится исходная величина давления.

Для регуляторов используются в основном только тарельчатые двухседельные клапаны с мембранным рычажно-грузовым приводом. Этим обусловливается то, что ход штока будет незначителен. Расчетная длина хода составляет не более 0.15 диаметра отверстия в седле клапана.