Добавить в цитаты Настройки чтения

Страница 10 из 12

Плотность тока катодная Ам2 – 180-350

Напряжение на ванне, В – 2,6-3,0

Температура католита, оС – 55-75

рН католита –2,1-4,8

скорость циркуляции католита на ячейку, лч – 20-30

расход электроэнергии на 1 т никеля, кВтч – 2400-3300

выход анодного скрапа, % – 16-18

Очистка анолита – включает 3 основные операции – очистку от железа, меди и кобальта.

Очистка от железа – FeSO4+. Проводится с переводом иона в 3-х валентное состояние с последующим гидролитическим осаждением (Fe2O3xH2O) Окислителем служит кислород воздуха. Очистку проводят в чанах с воздушным перемешиванием (пачуках). При гидролизе образуется серная кислота, для ее нейтрализации вводят карбонат никеля.

Для отделения полученных кеков от раствора используют дисковые фильтры. Дважды проводится кислотная репульпация с целью извлечения части никеля и далее материал плавят вместе с рудным сырьем в руднотермических печах.

Очистка от меди – цементацией меди никелевым порошком. Используется восстановление оксида никеля водородом. Обеспечивается отсутствие кислорода и используется специальные аппараты – цементаторы. Никелевый порошок подают на вход нагнетательных насосов, растворы снизу в цементатор. В верхней части аппарата скорость вертикального потока снижается из-за резкого расширения корпуса, в результате чего частицы твердых материалов образуют четко выраженный кипящий слой, который удерживается на глубине 2м от сливного порога. Выделившуюся цементную медь периодически выпускают из цементатора и направляются в медное производство.

Больший эффект может быть достигнут при применении специальных клапанов типа Покет Фидер, которые в меньшей степени будут сбивать режимы процесса за счет увеличения циклов выпуска меди и приближения процесса к непрерывному.

Очистка от кобальта. Проводится по процессу, близкому к очистке от железа с использованием газообразного хлора в качестве окислителя.

Реакция представлена ниже:

2CoSO4 + Cl2 + 3H2O + 3NiCO3= 2CO(OH)3 +2NiSO4 + NiCl2 +3CO2

ГИДРОМЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ

Гидрометаллургические процессы наиболее распространены при производстве никеля по сравнению с производством меди. В настоящее время их применяют для переработки окисленных никелевых руд и никелевых сульфидных концентратов, пирротиновых концентратов, сульфидных полупродуктов (штейнов, файнштейнов и др.) Используются сернокислые, аммиачные и солянокислые растворы.

Основной процесс – выщелачивание с применением повышенного давления. Это позволяет вести процесс при повышенных температурах. Высокие давления и температуры ускоряют химические реакции и повышают полноту их протекания. Рост параметров безразрывно связан с совершенствованием условий гидротранспорта и регулирования сред, а повышение непрерывности процесса приводит к выраженной потребности в автоматизации и автоматическим клапанам. Используются автоклавные процессы. Их проводят в специальных герметичных автоклавах. В металлургии никеля применяются горизонтальные автоклавы.

Гидрометаллургическим способом перерабатываются окисленные никелевые руды, содержащие 1,5%Ni и 0,8%Co по аммиачной схеме. Сначала руду подвергают селективному восстановительному обжигу, при котором никель восстанавливается до металла, а железо до Fe3O4. Охлажденный огарок выщелачивают в турбоаэраторах – герметичных пневмомеханических мешалках – с растворами, содержащими 5-7% аммиака и 4-5% оксида углерода. Общий процесс с точки зрения критичности для контуров регулирования может быть отнесен к таковому по аммиаку, см. ниже.

Me + 6NH3 +CO2+12O2 = Me(NH3)6CO3

Гидроксид железа и большая часть кобальта остается в хвосты выщелачивания. Полученные растворы далее подвергают термическому разложению острым паром с образованием нерастворимых карбонатов никеля и кобальта. Осадок карбонатов сушат и прокаливают в термических печах, что приводит к образованию оксида никеля. Оксид никеля спекают на агломерационных машинах. Товарным продуктом технологии является спек (синтер), содержащий 88% Ni и 0,7%Co.

Дальнейшее совершенствование технологии заключается в применении сернокислотного выщелачивания под давлением до 0,4-0,5МПа в вертикальных автоклавах, что позволяет проводить процесс при температурах до 240-260 оС. В раствор при выщелачивании переходит до 95% никеля и кобальта в виде сульфатов NiSO4 и CaSO4. После очистки от железа раствор нейтрализуют и обрабатывают сероводородом в специальных автоклавах, в результате чего получают сульфидный концентрат. Конечное извлечение из руды 90%.

Аммиачное выщелачивание проводят в 4-х камерных автоклавах объемом 120 м3 для сульфидных никелевых концентратов (14%Ni, 3%Cu, 0,2%Co, 35% Fe, 28% S).

Технологическая схема:





1. аммиачное выщелачивание концентрата при Т =77-82оС, давлении 70 КПа, в раствор в форме аммиакатов переходит никель, медь и кобальт, а железо, окисляясь, выпадает в осадок в виде гидроксида.

2. кристаллизация сульфида меди при нагреве раствора до 110 оС.

3. последовательное автоклавное восстановление водородом никеля и осаждение кобальта сероводородом

4. кристаллизация сульфата аммония из отработанного раствора.

В РФ такие схемы используются на РАО ГМК Норильский Никель для переработки пирротиновых концентратов, на комбинате Южуралникель для переработки кобальтового штейна (автоклавной массы), получаемой пи обеднении конвертерных шлаков, на комбинате Североникель для растворения богатых никелевых концентратов с целью обогащения никелевого электролита.

Другие гидрометаллургические процессы.

– Окислительное выщелачивание в горизонтальных автоклавах с рабочей емкостью до 10 м3 при 108 оС и давлении 1,5 МПа.

– Серосульфидная флотация – флотационное отделение сульфидов и элементарной серы от оксидов.

– Плавка автоклавного сульфидного концентрата (Надеждинский металлургический завод РАО ГМК Норильский Никель).

– Солянокислое выщелачивание (Норвегия).

ОСОБЕННОСТИ ВЫБОРА КЛАПАНОВ

Клапаны и арматура для основных процессов никелевого производства должны определяться при помощи расчета с использованием следующих данных:

– среда

– условия по давлению, температуре, разнице давлений

– требования к регулированию, качество, надежность и погрешность регулирования в течение заданного срока эксплуатации

– возможности автоматизации, используемым протоколам, возможность работы электроники в условиях загрязненной среды никелевых цехов

– конструктивное исполнение и привязка к трубопроводам.

– требование унификации

Сложность выбора клапанов для никелевого производства определяется большим количеством применяемых и сложных сред, большими объемами и скоростями потоков, сложными коррозионными условиями.

В отличие от традиционного выбора по технико-экономическим показателям, для производства никеля и подобных сложных производств лучше осуществлять выбор по наиболее сильным проектным решениям.

Материалы для клапанов ассортимент материалов для клапанов, удовлетворяющим требованиям процессов в металлургии весьма ограничен, и выбор представляет сложную задачу.

Влияние конструкции проточной части. Как известно, регулирование происходит в зависимости от изменения давления и расхода до и после клапана. В связи с особенностями регулирования внутри клапана всегда происходит определенное понижение, и затем восстановление давления. Однако, если в процессе регулирования обычной жидкости после образования кавитационных пузырьков происходит их схлопывание, то в случае снижения давления ниже критического схлопывания не происходит, и на зародившихся пузырьках начинает развиваться поток туманно-капельного типа, выделение солей, деградация растворов и т.п. Возникающие в результате несовершенства проточной части погрешности регулирования и потери, следующие из растущей колебательности процесса, значительно увеличиваются.