Добавить в цитаты Настройки чтения

Страница 4 из 7

Учитывая важнейшие структурные свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например с близкими звездами. Правда, попытки визуально обнаружить невидимые массивные спутники в двойных звездах по эффектам поглощения ими своих светил-партнеров пока еще не увенчались успехом.

Другим направлением поиска гравитационных коллапсаров может служить изучение ядер галактик. В этих структурных образованиях, которые многие астрофизики связывают с загадочными квазарами, по идее должны скапливаться в сверхплотном состоянии колоссальные количества звездной материи, образованной сталкивающимися и сливающимися светилами. Теория предсказывает, что в подобных условиях вполне могли бы сформироваться сверхмассивные гравитационные коллапсары квазизвездного типа. Притягивая и разрушая окружающие их светила, эти «звездные каннибалы» способны создавать в центре галактик чудовищные аккреционные диски, выбрасывая вдоль их осей грандиозные фонтаны сверхбыстрых струй и потоков микрочастиц. Подобные феерические картины астрофизики уже наблюдали вблизи некоторых галактических ядер, что как минимум указывает на правильное направление поиска сверхмассивных кандидатов в черные дыры, в миллиарды раз превышающих Солнце. Недавние наблюдения в различных частях спектра зафиксировали одного из таких монстров и в глубине Млечного Пути. Там, судя по всему, расположился зародыш или, наоборот, останки квазара, включающие унитарный или множественный коллапсар с массой, превышающей два с половиной миллиона солнц.

Нерешенная задача науки о реальности гравитационного коллапса и наличии объектов, заключающих в себе непонятную сингулярность пространства-времени, является актуальнейшей задачей как астрофизики, так и физики элементарных частиц. Таким же образом существуют и два перспективных пути ее решения – эксперименты на ускорителях элементарных частиц и наблюдения всплесков космического излучения.

Современные космологические сценарии допускают, что коллапс звезд является не единственным способом рождения черных дыр и существуют особые механизмы формирования первичных коллапсаров в ранней Вселенной. Если вспомнить раннюю историю Большого взрыва, то средняя плотность вещества на определенном этапе значительно превышала ядерный уровень и любые, даже незначительные ее колебания в теории могли привести к локальным коллапсам пространства-времени. Электронное моделирование показывает, что в подобных условиях должны были возникать особые микроскопические коллапсары много меньше элементарных частиц, но с громадной для таких параметров массой в стотысячные доли грамма. В ходе ранней эволюции Вселенной плотность космической материи стремительно падала, так что рождались все более массивные первичные коллапсары, начиная от размеров нуклонов – протонов и нейтронов и заканчивая обычными звездными параметрами.

Физики-теоретики настойчиво предсказывают существование сверхкороткоживущих микроскопических черных дыр, которые физики-экспериментаторы не менее настойчиво ищут в потоках космических лучей сверхвысоких энергий. Существует даже совершенно фантастический проект массовой генерации подобных микроколлапсаров при взаимодействии очень энергичных встречных пучков элементарных частиц на мощных ускорителях – коллайдерах. Значение факта существования черных дыр для науки трудно переоценить, их «космологический» смысл наличия во Вселенной выходит далеко за рамки астрономии и физики элементарных частиц.

Вообще говоря, сама по себе сверхвысокая плотность вещества новорожденной Вселенной могла быть и недостаточна для генерации микроколлапсаров. Для начала гравитационного коллапса требовались некие флуктуации плотности, достаточно существенные в малых масштабах. Впрочем, даже при отсутствии флуктуаций процессы гравитационного коллапса могли спонтанно происходить во время космологических фазовых переходов. Это могло происходить на самых ранних этапах Большого взрыва, когда только что закончился период инфляционного расширения, или в эпоху ядерной плотности, когда адроны, такие как протоны и нейтроны, конденсировались из кваркглюонной плазмы.

Процесс излучения энергии и массы микроколлапсара, по расчетам, должен идти с постоянным увеличением. Так что черная дыра весьма нестабильна: она сжимается, в результате чего нагревается и начинает излучать все более энергичные частицы и при этом уменьшается все быстрее. Когда коллапсар достигает граничной массы около тысячи тонн, он в течение секунды взрывается, как миллион мегатонных ядерных бомб. Время полного испарения черной дыры пропорционально кубу его начальной массы, и у коллапсара солнечной массы время жизни превышает все мыслимые пределы, составляя число с шестьюдесятью нулями лет. Дыра же с массой в миллиарды тонн должна существовать в пределах возраста современной Вселенной. Следовательно, первичные коллапсары такой массы именно сейчас должны были бы взрываться, заканчивая свой жизненный цикл. А все дыры с меньшей массой должны были испариться в более ранние космологические эпохи.

С тех пор как почти столетие назад возникла идея ускорять элементарные частицы в электрических и магнитных полях, она была многократно воплощена в нескольких поколениях всевозможных циклотронов, бетатронов, синхрофазотронов и коллайдеров. Трудно даже перечислить все научные задачи, решенные с их помощью, и открытия, в которых они принимали полноправное участие. Их использовали для расщепления и синтеза атомов, превращения элементов, создания антивещества и частиц, ранее не наблюдавшихся в природе. Но все эти замечательные результаты сильно блекнут перед перспективой проводить лабораторные исследования прообразов наиболее таинственных объектов Вселенной – застывших звезд – микроколлапсаров.





Компьютерное моделирование показывает, что в столкновениях микрочастиц, разогнанных до колоссальных энергий, вполне могут возникать провалы пространства-времени. В этих очень странных частицах-коллапсарах теоретически очень многое напоминает процессы, протекающие в их макроскопических аналогах, однако в допустимых современной технике энергетических пределах время существования искусственных черных дыр представляется весьма малым.

В решении научной задачи исследования самой возможности существования искусственных миниколлапсаров последнее слово остается за физиками-экспериментаторами. Если они смогут создавать черные дыры, то следует ожидать целого фейерверка новых физических явлений, включая появление новых элементарных частиц. Может быть, что за определенным энергетическим пределом столкновения элементарных частиц не будут уже создавать ливни вторичных частиц, а приведут к рождению своеобразной «цепной реакции» черных дыр все увеличивающихся размеров.

Глава 4. Стабильность материи

Известно, что время жизни протона по крайней мере в 1020 раз больше, чем возраст Вселенной, но теория говорит, что он может жить вечно. Если протон не бессмертен, то и вся обычная материя когда-то должна распасться.

С. Вайнберг.

Распад протона

Одна из нерешенных задач науки – исследование степени стабильности окружающего нас мира. Долгое время считалось, что атомы вещества вечны и неизменны, затем то же говорилось об атомных ядрах обычных элементов, таких как водород, гелий или углерод, которые казались абсолютно стабильными. Сегодня мы знаем, что теоретическая ядерная физика предсказывает распад абсолютно всех атомных ядер, так что всю материю в какой-то степени можно считать радиоактивной. Последний «бастион стабильности» материи составляют некоторые элементарные частицы, такие как электрон и протон. Нуклоны – протоны и нейтроны – при взаимодействии с другими частицами, превращаются в иные микрочастицы, совершенно отличные от самих нуклонов. Даже в самом элементарном и легчайшем ядре атома водорода, состоящем из одного нейтрона и одного протона, также возможны процессы распада. Поэтому, чтобы понять суть стабильности или нестабильности мироздания, необходимо знать, почему, к примеру, абсолютно стабилен электрон и какие физические принципы предохраняют его от самопроизвольного распада в иные микрочастицы.