Добавить в цитаты Настройки чтения

Страница 4 из 6



Данную постоянную распада Резерфорд и Содди первоначально назвали «радиоактивная константа».

Открытие Резерфорда и Содди позволило сделать важнейший вывод о принципиальной возможности существования еще неоткрытых радиоактивных элементов, которые легко будет опознать по их радиоактивности, даже в весьма незначительных количествах.

В том же 1903 году в Париже Пьер Кюри со своими сотрудниками сумел измерить теплоту, самопроизвольно выделяемую солями радия. «Непрерывное выделение такого количества тепла, – отмечал Кюри, – никак не может быть объяснено только обычными химическими метаморфозами. Если искать причину образования тепла в каких-то внутренних превращениях, то эти превращения должны быть более сложной природы и должны быть вызваны какими-то изменениями самого атома радия». Правда, вначале супруги Кюри допускали возможность и какого-то другого механизма выделения энергии, полагая, что, к примеру, радиоактивные элементы могут черпать энергию из внешнего пространства. В качестве аргумента они предлагали схему, по которой радиоактивные элементы «постоянно пронизывались некими еще неизвестными радиациями, которые при встрече с радиоактивными телами задерживаются ими, с преобразованием в радиоактивную энергию». К сожалению, эта замечательная гипотеза, которая вполне могла бы привести к открытию космических ливней из элементарных частиц, ионов и ядер атомов, высказанная еще в 1900 году, так и не получила дальнейшего развития.

Итак, очередной этап радиационных исследований закончился знаменательной вехой открытия закона радиоактивных превращений и нового вида энергии – атомной, проявляющейся в этих превращениях.

Глава 2. Тайны катодных лучей

Исследования, которые привели к открытию электрона, начались с попыток объяснения расхождения поведения катодных лучей под действием магнитных и электрических сил.

В 1897 году в кембриджской лаборатории Кавендиша была решена загадка катодных лучей. Молодой директор лаборатории Джозеф Джон Томсон наглядно показал корпускулярную природу катодного излучения. Неожиданное развитие получили в Кембридже и исследования с Х-лучами, в которых Томсон успешно использовал ионизирующее действие рентгеновского излучения для анализа закономерностей прохождения электричества через газы. В результате этой коллективной работы, где кроме самого Томсона участвовали некоторые из его наиболее талантливых сотрудников, в 1903 году появилась классическая монография «Прохождение электричества через газы». Именно данное направление исследований в конечном итоге привело к открытию первой субатомной элементарной частицы – электрона.

В 1874 году ирландский физик и астроном Джордж Стони (1826–1911) выступил в Белфасте с докладом, в котором на основе законов электролиза Фарадея предложил «атомарную» теорию электричества. Стоней пробовал отстаивать приоритет концепции «атомов электричества», но в истории науки сохранилось утверждение, что именно Гельмгольц высказал на примере электролиза гипотезу о связи атомной валентности с минимальным электрическим зарядом. Тем не менее в ходе полемики со сторонниками Гельмгольца Стоней все же стал «крестным отцом» «атомов электричества», в 1891 году назвав носитель элементарного заряда «электроном».

Вернемся теперь к катодным лучам и вспомним, что еще в конце семидесятых годов позапрошлого века в Кавендишской лаборатории были проведены обширные серии экспериментов, показавшие, что проводимость газов скорее всего обусловлена движением потоков ионов, а сами катодные лучи возникают в результате бомбардировки катода ионами газа, ускоренными в мощном электрическом поле. Там же в 1884 году было предложено измерять удельный заряд, равный отношению заряда к массе катодно-лучевых частиц по их отклонению в магнитном поле, как потока молекул или атомов.



Тогда же исследования катодных лучей проводились в Германии, однако там опыты по электрическому отклонению катодных лучей не были признаны достаточно убедительными. В этой обстановке зреющего открытия к экспериментам с катодными лучами в 1894 году приступила «кембриджская команда Томсона», а уже через год во Франции Жан Батист Перрен (1870-1942) предложил удачный метод для определения знака заряда катодного излучения, убедительно продемонстрировав, что лучи действительно переносят отрицательный заряд. Классические эксперименты Томсона и Перрена стали тем последним и решающим аргументом в пользу признания корпускулярной природы катодного излучения как потока, состоящего из мельчайших отрицательно заряженныхчастиц.

Томсон со своими ассистентами и учениками, шотландским физиком Чарльзом Томсоном Рисом Вильсоном (1869–1959) и Джоном Сили Эдвардом Таунсендом (1868–1957) разработали уникальную методику получения громадного количества ионов в разряженном воздухе и других газах с помощью воздействия на вакуумированные колбы рентгеновских лучей и радиевого излучения. Детально изучив диффузию и подвижность ионов, они убедительно доказали, что в пределах погрешностей экспериментов произведение концентрации газовых ионов на заряд электрона близко совпадает с аналогичной величиной для одновалентных ионов, растворенных в электролите. При этом средний заряд ионов практически не зависел от вида газовой среды самого источника ионизации. Таким образом, элементарный электрический заряд в электролите, переносимый ионами, оказался в точности равным ионному элементарному заряду в газовой среде.

Используя электронно-лучевую трубку собственной конструкции с электродами в виде пластин конденсатора и магнитными катушками, Томсон подвергал катодный пучок попеременному действию электрического и магнитного полей. При этом ученый получил возможность надежно и достаточно точно определять отношение заряда к массе катодных лучей. Подобное отношение оказалось независимым от вида разреженной газовой среды в вакуумированной колбе и в тысячу раз большим, чем такое же отношение для водородных ионов в электролитах, полученное на основе законов электролиза. Этот результат имел ошеломляющие следствия, ведь если допустить, что заряд «катодной корпускулы» равен заряду водорода, то ее масса будет в тысячу раз меньше, чем у легчайшего атома водорода. В 1906 году Томсон сделал окончательный вывод о том, что катодные лучи состоят из заряженных частиц, а их элементарный заряд соответствует аналогичной величине одновалентных ионов и равен 1,03 × 10–19 Кулона, при средней массе в 1 / 1700 атома водорода.

Джозеф Джон Томсон (1856–1940)

Томсон был гениальным ученым, отличался творческим воображением и оригинальностью, его работы имели новаторский характер – они явились исходной точкой для всех дальнейших исследований.

Между тем Томсон упорно продолжал свои исследования, перейдя к анализу отношений для зарядов к их массам уже для частиц, генерируемых ультрафиолетовым излучением и просто испускаемых накаленным катодом. Во всех случаях порядок отношения заряд / масса оказался очень близким к катодному излучению. Эти мельчайшие частицы вещества Томсон назвал «катодными корпускулами», однако это несколько громоздкое название не удержалось.

Между тем общее признание факта существования электрона пришло лишь в 1911 году после ряда блестящих измерений элементарного заряда, выполненных американским физиком-экспериментатором Робертом Эндрюсом Милликеном (1868-1953), удостоенным Нобелевской премии 1923 года «За исследования в области элементарных зарядов и фото электрического эффекта». Сам по себе термин «электрон» вошел в широкое повсеместное употребление только после того, как в 1925 году немецкие физики Джеймс Франк (1882-1964) и Густав Людвиг Герц (1887-1975) стали нобелевскими лауреатами «За открытие законов столкновений электронов с атомами».