Страница 29 из 32
Гиппопеда как кривая, получающаяся при пересечении сферы и цилиндра, касающегося ее изнутри. Буквенные обозначения соответствуют приведенным на ил. 44.
Этот красивый геометрический вывод, лишь отдаленно напоминающий описания, составленные Аристотелем и Симпликием, был не так уж и чужд рассматриваемой эпохе. Учитель Евдокса Архит, решая проблему удвоения куба, рассматривал пересечение трех поверхностей вращения – тора (якорного кольца), конуса и цилиндра. Те, кто считает, будто Евдокс не мог оказаться вне этого тренда, но не выражает желания рассуждать об этом в категориях трансцендентных кривых четвертого порядка, могли бы дополнить сферу и цилиндр еще одной простой поверхностью, где можно расположить гиппопеду. Это некая поверхность, постоянным сечением которой является парабола. (Представьте лист бумаги, согнутый таким образом, чтобы два его противоположных края образовывали две одинаковые параболы, тогда линия гиппопеды будет полностью лежать на этом листе.) У нас нет убедительных доказательств того, знал ли Евдокс об этом свойстве изобретенной им гиппопеды, однако то же самое может быть со всей строгостью применено и к сечению цилиндра. Исходно сам Евдокс, скорее всего, рассуждал именно в этих категориях, хотя, когда средневековые и ренессансные астрономы узнали о подобных моделях, они выказали их непонимание, во всяком случае в некоторых аспектах.
44
Вспомогательная схема, позволяющая понять геометрию гиппопеды. Диаграмма вписана в центральную плоскость ил. 43.
Модель Евдокса оказалась столь значима в истории геометрической астрономии, что нам просто необходимо доказать ее хотя бы схематично для демонстрации элегантности астрономической доктрины, разработанной более двадцати трех столетий назад. Будем различать несущую и несомую сферы. На ил. 44 направление взгляда (сверху) совпадает с осью первой сферы и параллельно оси цилиндра, на поверхности которого находятся точки F, E и A. (Поучительно будет спросить, почему этот цилиндр не параллелен другой оси; или, например, не расположен симметрично между ними.) A – исходная точка планеты, а дуга AB – ее движение вдоль экватора несомой сферы за какое-то время. Если смотреть сверху, то он (экватор) будет казаться эллипсом, а угол AOB, как он виден на рисунке, – будет меньше реального трехмерного угла. На самом деле он равен изображенному на рисунке углу AOC, где C – это точка, отделившаяся от A в тот же момент времени, что и точка В, но движущаяся по другому кругу. Точки B и C, очевидно, будут располагаться на одном и том же уровне (CB образует перпендикуляр с OA). Рассмотрим теперь, как это составное движение планеты будет осуществляться во времени, если наблюдать за ним в плоскости диаграммы (то есть ортогональной проекции на эту плоскость). Планета движется вверх до точки B несомым движением и дополнительно поворачивается движением несущей сферы, осуществляющей перенос отрезка OB в OE; причем угол BOE равен углу AOC. Необходимо доказать, что точка E лежит на линии сечения цилиндра. Если угол CBD прямой, а точка D лежит на отрезке OC, то достаточно показать неизменность длины отрезка CD; поскольку в этом случае вся совокупность точек типа D (включая F) будет лежать на окружности с центром в O. Угол FEA также будет прямым, поэтому точка E будет лежать на окружности с диаметром FA, то есть на сечении цилиндра.
45
Точное изображение модели Евдокса в применении к Юпитеру. Представлен вид трехмерной траектории в перспективе.
Проще всего получить доказательство постоянства длины отрезка CD, используя свойства эллипса, но, рассматривая соответствующую часть диаграммы в трех измерениях, несложно провести доказательство, основанное на отношении сторон подобных треугольников. Это легче, чем осуществить первичную визуализацию; и уж точно легче, чем доказать теорему о параболическом листе. Я бы хотел только добавить, что фокус этой параболы является четвертой частью расстояния от A до F.
Здесь мы имеем дело с задатками впечатляющей геометрической модели планетного движения, но, как это ни прискорбно, она, если брать ее в чистом виде, обладает рядом существенных недостатков. Иногда истина искажается. Неверно будет полагать, будто все витки попятного движения планет идентичны друг другу (как показано на ил. 42); неверно и то, что смещение планеты по широте обязательно должно быть значительным. Попятные движения Сатурна и Юпитера могут быть довольно правдоподобно представлены без поправок для широты (см. ил. 45 для Юпитера). К сожалению, если не вводить добавочных сфер, в этой модели можно свободно менять только два основных параметра: относительные скорости по гиппопеде и самой гиппопеды; и размеры гиппопеды, зависящие от наклона вращающейся сферы. Этих параметров явно недостаточно для согласования модели с действительными движениями Марса, Венеры или Меркурия. Если правильно задать скорости, то длина дуги попятного движения даст чудовищную ошибку, и наоборот.
С современной точки зрения относительные скорости по гиппопеде и самой гиппопеды зависят как от самих планет, так и от угловой скорости Земли при ее обращении вокруг Солнца, а размер гиппопеды по отношению к сфере зависит от относительных размеров планетных орбит при их вращении вокруг Солнца, включая нашу планету. Не углубляясь в детали, заметим следующее: в первом случае факты, очевидно, могут потребовать движение самой гиппопеды с такой высокой скоростью по сравнению со скоростью находящейся на ней планеты, что фаза попятного движения окажется просто нереализуемой. Именно это и происходит в упомянутых примерах. И во втором случае, если мы зафиксируем в нашей модели длину дуги попятного движения в строгом соответствии с наблюдениями, это вынудит нас принять как следствие получившуюся гиппопеду, независимо от того, какой будет ее ширина. Дело не только в ее чрезмерной величине для Марса и Венеры, но еще и в том, что в этом случае планетное движение по широте имеет весьма отдаленное отношение к орбитальным размерам. Это обусловлено преимущественно расположением планетных орбит, включая орбиту Земли, в близких друг к другу, но разных плоскостях.
КОСМОЛОГИЯ АРИСТОТЕЛЯ
По поводу моделей Евдокса существует много вопросов, оставшихся без ответа, или вовсе не имеющих ответа, и они касаются не только мотивов, понудивших его создать свою систему. Поскольку местом, где он учительствовал, была малоазийская греческая колония (Кизик находится на южном побережье Мраморного моря, к юго-востоку [через море] от современного Стамбула), не исключено, что ему были знакомы астрологические и религиозные аспекты астрономического знания. Однако к тому времени интеллектуальные предпочтения греков уже не совпадали с предпочтениями их азиатских соседей. Вероятно, греки не воспринимали поклонение звездам как нечто абсолютно враждебное, но в их религии этим вопросам отводилась второстепенная роль, как, собственно, и вопросам поклонения Солнцу и Луне, хотя у них и были соответствующие божества, персонифицированные в Гелиосе и Селене. Когда великий поэт и драматург Аристофан, умерший примерно тогда же, когда родился Евдокс, характеризовал различие между религией греков и иноземцев, он отмечал, что если последние обожествляли Солнце и Луну, то греки совершали подношения персонифицированным богам – таким, как Гермес. Эллинистическая религиозная традиция долгое время находилась в стороне от бесхитростных древних небесных религий, хотя спустя несколько столетий после возникновения восточной астрологии этот тренд поменялся.