Добавить в цитаты Настройки чтения

Страница 10 из 15



Вскоре после смерти Сталина в 1953 году Берия был арестован, заключен в тюрьму и расстрелян[149]. Первое главное управление переформировали и переименовали[150]. Теперь вопросами атомной энергии – от добычи урана до испытаний бомб – занималось Министерство среднего машиностроения, сокращенно Минсредмаш или просто Средмаш. Новый премьер Никита Хрущев положил конец эпохе сталинских репрессий, либеральнее относился к искусствам, поддерживал развитие высоких технологий и обещал к 1980 году построить в СССР коммунизм – утопию вроде Шангри-Ла[151], гарантирующую трудящимся равенство и изобилие[152]. Чтобы модернизировать экономику и крепче удерживать власть, Хрущев выступал за освоение космоса и развитие ядерных технологий.

В успехе АМ-1 советские физики и их партийные боссы увидели панацею, которая, наконец, поможет СССР освободиться от ограничений прошлого и продвинуться в светлое будущее[153]. Людям, все еще восстанавливавшим разрушенную войной страну, обнинский реактор наглядно демонстрировал, что СССР может быть мировым технологическим лидером в интересах обычных граждан, принося свет и тепло в их дома. Физики, работавшие на АМ-1, получили Ленинскую премию, энергию атома воспевали в журнальных статьях, фильмах и радиопередачах, в школах детям рассказывали об основах ядерной энергетики и о мирных целях советской ядерной программы в отличие от милитаристских устремлений США[154]. По словам историка Пола Джозефсона, ученые-ядерщики стали «почти мифологическими фигурами в пантеоне советских героев» – наряду с космонавтами и павшими героями Великой Отечественной войны[155].

Однако маленький реактор в Обнинске был не тем, чем казался на первый взгляд[156]. Его конструктивные особенности были заточены не на выработку электричества, а для быстрого и дешевого производства оружейного плутония. Реактор начинала строить та же команда Минсредмаша, которая создала «Аннушку», но коррозия материалов, утечки радиации и ненадежность инструментов помешали им завершить задачу. В основу АМ легли технологии, разработанные для атомных подводных лодок, и только когда идея была сочтена непрактичной, кодовое название АМ – «Атом Морской» – заменили на более невинное[157].

Родовой особенностью этого реактора была нестабильность работы[158].

В ядерном оружии огромное число ядер атомов урана распадается в доли секунды, высвобождая всю свою энергию в разрушительной вспышке огня и света. В реакторе процесс деления должен быть управляемым и осторожно поддерживаемым в течение недель, месяцев и даже лет. Для этого требуются три компонента: замедлитель, стержни управления и охладитель.

Простейшая форма ядерного реактора не требует никакого оборудования вообще. Если имеется нужное количество урана-235 в присутствии замедлителя нейтронов – воды или графита, начинается самоподдерживающаяся цепная реакция с выделением ядерной энергии в виде тепла. Некогда комбинация обстоятельств, необходимых для такого события, – критичность – спонтанно возникла на территории современного государства Габон, в древних подземных залежах урана, где замедлителем служили грунтовые воды[159]. Там самоподдерживающаяся цепная реакция началась 2 млрд лет назад, производя небольшие количества тепловой энергии – в среднем около 100 киловатт (достаточно, чтобы зажечь 1000 стоваттных лампочек), и безостановочно продолжалась миллион лет, пока вода не выкипела от тепла распада.

Но для генерации энергии в ядерном реакторе поведение нейтронов необходимо контролировать, чтобы обеспечить постоянство реакции и использовать тепловую энергию деления для получения электричества. В идеале каждая отдельная реакция деления должна запускать лишь одно следующее деление в соседнем атоме, так что каждое последующее поколение нейтронов должно содержать то же самое их число, что и поколение до него, и реактор должен оставаться в том же критическом состоянии.

Если каждое деление не создает столько же нейтронов, как предыдущее, реактор переходит в субкритическое состояние, цепная реакция ослабевает и со временем останавливается, реактор «глохнет». Если же каждое поколение нейтронов приносит более одного деления, цепная реакция может начать расти слишком быстро – к потенциально неуправляемой сверхкритичности и внезапному значительному выбросу энергии, как это происходит в ядерном оружии. Поддержание стабильного состояния между этими двумя крайностями – тонкая задача. Первым инженерам-ядерщикам пришлось создать инструменты для овладения силами, опасно близкими к пределам человеческих возможностей управления.

Масштаб субатомной активности внутри ядерного реактора, микроскопической и невидимой, трудно воспринять: генерация электрической мощности в 1 ватт требует деления 30 млрд ядер атомов в секунду[160]. Около 99 % нейтронов, выбрасываемых при одном событии деления, являются частицами высокой энергии – «быстрыми» нейтронами, вылетающими со скоростью 20 000 км/с. Быстрые нейтроны ударяют своих соседей и вызывают последующее деление, продолжая цепную реакцию в среднем в течение всего 10 наносекунд. Этот отрезок времени остроумцы американского Манхэттенского проекта измеряли в «шейках»[161] от английского выражения «two shakes of a lamb’s tail», «два дрожания хвоста ягненка». Он слишком краток, чтобы в течение него можно было управлять какими-либо механическими средствами[162]. К счастью, среди оставшегося 1 % нейтронов, высвобождаемых каждым распадом, есть меньшинство, испускаемое в более доступных человеку временны́х рамках, которые измеряются секундами или даже минутами[163]. Существование этих запаздывающих нейтронов, появляющихся достаточно медленно, чтобы ими мог управлять человек, и делает возможной работу ядерного реактора.

Плавно управлять нарастанием цепной реакции позволяют электромеханические стержни, содержащие такие поглощающие нейтроны элементы, как борид кадмия или карбид бора. Они действуют как «атомные губки», впитывая и удерживая запаздывающие нейтроны, предотвращая запуск дальнейшего деления[164]. Когда стержни вставлены в реактор полностью, активная зона реактора остается в субкритическом состоянии. По мере их вытаскивания деление медленно нарастает, пока реактор не становится критическим – затем он может быть оставлен в этом состоянии и регулироваться по необходимости. Вытаскивание стержней выше или в большем числе увеличивает реактивность и количество вырабатываемого тепла и энергии, введение дает противоположный эффект. Но работа с реактором с использованием только этой части в менее чем 1 % всех нейтронов деления делает процесс управления очень чувствительным: если стержни выдвигаются слишком быстро, слишком далеко – или не срабатывает одна из нескольких защитных систем, – реактор может захлебнуться от делений и его состояние станет «надкритическим». Результатом будет авария, катастрофический сценарий, при котором случайно запускается процесс, схожий с тем, что происходит в атомной бомбе, и неконтролируемый выброс энергии нарастает, пока активная зона реактора не расплавится – или не взорвется.

149

Montefiore, Stalin, 652.

150

Schmid, Producing Power, 45 and 230n29.

151

Поселение в горах, рай на Земле из романа-утопии Джеймса Хилтона «Потерянный горизонт» (Lost Horizоn) и одноименного фильма Фрэнка Капры (1937). – Прим. пер.

152

Josephson, Red Atom, 11.

153

Там же, 4–5.

154

Paul Josephson, “Rockets, Reactors, and Soviet Culture,” in Loren Graham, ed., Science and the Soviet Social Order (Cambridge, MA: Harvard University Press, 1990), 174.



155

Josephson, Red Atom, 11

156

Там же, 25. Schmid, Producing Power, 45.

157

Там же, 46.

158

Josephson, Red Atom, 26–27.

159

Evelyn Mervine, “Nature’s Nuclear Reactors: The 2-Billion-Year-Old Natural Fission Reactors in Gabon, Western Africa,” Scientific American, July 13, 2011.

160

Ray L. Lyerly and Walter Mitchell III, Nuclear Power Plants, rev. ed. (Washington, DC: Atomic Energy Commission, 1973), 3; Bertrand Barré, “Fundamentals of Nuclear Fission,” in Gerard M. Crawley, ed., Energy from the Nucleus: The Science and Engineering of Fission and Fusion (Hackensack, NJ: World Scientific Publishing, 2016), 3.

161

Шейк (shake) – неофициальная единица времени, придуманная ядерщиками и равная 10 наносекундам или 10-8 секундам. – Прим. пер.

162

Chuck Hansen, U. S. Nuclear Weapons: The Secret History (Arlington, TX: Aerofax, 1988), 11.

163

World Nuclear Association, “Physics of Uranium and Nuclear Energy,” updated February 2018,

https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/physics-of-nuclear-energy.aspx

164

Goldston and Von Hippel, интервью автору книги, 2018 год.