Добавить в цитаты Настройки чтения

Страница 2 из 3



2

Проще некуда

Семь правил, которые вам понадобятся

Дорогой читатель, позвольте вас успокоить. Чтобы учиться быстрому счету по этой книге, никаких особых познаний в математике вам не понадобится. Единственное, что от вас потребуется, – это помнить несколько простейших базовых правил, которым учат еще в начальной школе. И больше ничего, обещаю! Честное слово, даже если вы не станете читать эту главу, тех правил достаточно, чтобы вы справился с остальными главами моей книги.

Итак, в основе книги лежат семь легких математических правил. Сравнить их можно с содержимым столярного ящика. Строя прекраснейшие дома, плотник пользуется лишь пилой и топором. Вот и вам понадобится всего несколько математических инструментов, чтобы стать мастером быстрого счета. Некоторые из этих инструментов такие простые, что вы, возможно, сочтете лишним их упоминать. Но я все равно расскажу о них – во-первых, потому что они важные, а во-вторых, потому что они простые и лишний раз порадуют вас.

Правило 1

Первое правило на удивление простое. Порядок чисел при умножении роли не играет:

a × b = b × a

Если буквы вам не по душе, могу продемонстрировать то же самое на простейшем цифровом примере.

3 × 7 даст тот же результат, что 7 × 3. Итак, то, в каком порядке перемножать числа, совершенно не важно.

Правило 2

Второе правило тоже манна небесная для тех, кто пребывает в заблуждении и считает математику сложной.

Порядок чисел при сложении роли не играет.

a + b = b + a

И вот вам пример: 2 + 3 дадут в результате то же число, что и 3 + 2.

Правило 3

Квадрат определенного числа выглядит следующим образом: a × a = a2.

Обратите внимание на крошечную цифру 2 над последней «а» – читая эту книгу, вы успеете близко с ней познакомиться. Математики называют такие цифры степенями.

Вот еще пример: 3 × 3 можно обозначить как 32.

Разумеется, отрицательные числа тоже можно возводить в квадрат:

(‒a) × (‒a) = (‒a)2 = a2

Например: (‒3) × (‒3) соответствует (‒3)2.

А вот это невероятно красиво:

(‒3)2 дает тот же результат, что и 32.

Правило 4

На квадратные корни тоже приятно посмотреть:

Это означает, что если извлечь квадратный корень из возведенного в квадрат числа, то это же число и получится.

На языке цифр это выглядит вот так:

Правило 5

Когда надо умножать отрицательные числа, многие впадают в ступор. Если вас это тоже касается, то быстрому счету вам придется учиться долго.

Одно из важнейших правил звучит так: минус на минус дает плюс.

(‒x) × (‒y) = x × y



Примеры:

(‒2) × (‒3) = 2 × 3 = 6

(‒4) × (‒5) = 4 × 5 = 20

А вот если минус умножить на плюс, то получится, наоборот, минус:

(‒x) × y = ‒(x × y)

Примеры:

(‒2) × 3 = ‒(2 × 3) = ‒6

4 × (‒5) = ‒(4 × 5) = ‒20

Запомним это – минус на минус и минус на плюс, и тогда все минусы математики превратятся для вас в плюсы!

Правило 6

Если хотите понять доказательства приведенных в этой книге методов, придется научиться разлагать числовые выражения на множители и раскрывать скобки:

a(b + c) = ab + ac

(a + c)(b + d) = ab + ad + cb + cd

Вот и все – больше про разложение на множители знать нам ничего не понадобится.

Правило 7

Некоторые методы быстрого счета в этой книге основаны на трех видах квадратичных тождеств, которые включены в стандартную школьную программу. Все они – особые случаи правила 6:

(a + c)(b + d) = ab + ad + cb + cd

Квадратичное тождество первого типа:

(a + b)2 = a2 + 2ab + b2

Квадратичное тождество второго типа:

(a ‒ b)2 = a2 ‒ 2ab + b2

Квадратичное тождество третьего типа:

(a + b)(a ‒ b) = a2 ‒ b2

С этими семью правилами в готовальне у вас есть все шансы стать чемпионами быстрого счета. Ну что ж, пора отправляться завоевывать мир! Удачи и успехов!

3

Ходячий калькулятор

Чемпион мира по быстрому счету

В начальной школе я терпеть не мог спорт, зато мечтал стать чемпионом мира по решению в уме всяких математических примеров. Поэтому мне казалось ужасно несправедливым, что школьные спортсмены то и дело выступали на разных соревнованиях, ведь соревнований по математике просто не существовало. Сейчас-то я понимаю, что мое мнение о собственных математических способностях было необоснованно завышенным, я жил в мечтах: хотя считал я и правда довольно быстро, а числа так просто обожал, моих способностей не хватало, если числа в примерах были больше приведенных в таблице умножения. Впрочем, об этом никто не догадывался. Слухи о моих феноменальных математических способностях разлетались со скоростью света и с действительностью ничего общего не имели. Никогда не забуду, как мама одного из моих одноклассников на глазах у всего класса погладила меня по голове и выразила свое восхищение: еще бы, ведь я умею в уме перемножать многозначные числа. Мне тогда было девять лет. А еще мама моего одноклассника слышала, будто я умею и миллионы перемножать. Все это было неправдой, но стеснительность помешала мне опровергнуть слухи. Я смотрел на эту женщину и вспоминал, как однажды, будучи первоклашкой, возвращался из школы домой и был пойман шестиклассниками, которые потребовали сделать за них домашку по математике. Они крепко держали меня (впрочем, особых усилий от них не требовалось – я был самым мелким во всей школе) и, пока я не решил все задачки, не отпускали.

Задачки у них оказались очень простыми. В одной я нарочно допустил ошибку – хотел проверить, заметят ли они, но они, к моей великой радости, ничего не заподозрили. Легенда о моем таланте вдребезги разлетелась в шестом классе, когда отец отвел меня к университетскому профессору, предварительно рассказав ему о моих невероятных успехах. Профессор дал мне несколько примеров и выглядел довольно-таки разочарованным, когда я ошибся в первом же из них. Именно в тот момент я понял, что лучше всего считаю в спокойной обстановке и наилучшее впечатление произвожу на тех, кто сам с математикой не дружит.

В уме быстрее всех в мире считает американец по имени Скотт Фленсбург, и для него обстановка никакого значения не имеет. Его часто приглашают на знаменитые ток-шоу, а звезда американских телеэкранов Реджис Филбин назвал Фленсбурга живым калькулятором. Скотт Фленсбург посчитает в голове быстрее, чем мы успеем посчитать на калькуляторе. 27 апреля 2000 г. он попал в Книгу рекордов Гиннесса, потому что за 15 секунд наибольшее количество раз прибавил случайно выбранное двузначное число. Ему досталось число 38, и за это ничтожно короткое время он успел прибавить его 36 раз и выдать ответы: 38, 76, 114, 152, 190, 228 и так далее до 1368. Это означает, что одной секунды ему хватало, чтобы прибавить число 38 два раза. Мягко говоря, потрясающе. Попробуйте сами! Так быстро считать еще никому не удавалось!