Добавить в цитаты Настройки чтения

Страница 6 из 9



Технологические прогнозы весьма проблематичны, учитывая, что технологии развиваются через усовершенствования, сталкиваются с препятствиями и форсируются инновациями. Многие препятствия и отдельные инновации выглядят ожидаемыми, но к большинству тех и других это не относится. В моей собственной области экспериментов по созданию квантовых компьютеров я обычно наблюдаю, как отдельные технологические этапы, казалось бы вполне реализуемые, оказываются невозможными, тогда как другие задачи, нерешаемые, как мне думается, легко осуществляются на практике. В общем, не узнаешь, пока не попробуешь.

В 1950-х годах Джон фон Нейман, отчасти вдохновляясь беседами с Винером, ввел понятие «технологической сингулярности». Технологии имеют тенденцию улучшаться в геометрической прогрессии, скажем удваивать мощность или чувствительность приборов за некоторый интервал времени. (Например, с 1950 года компьютеры удваивали мощность примерно каждые два года – это наблюдение известно как закон Мура.) Фон Нейман экстраполировал наблюдаемый экспоненциальный технический прогресс и допустил, что «технический прогресс станет непостижимо быстрым и сложным», опережая человеческие возможности в уже не слишком отдаленном будущем. Действительно, если отталкиваться исключительно от наращивания вычислительных мощностей, выраженных в битах и битовых переходах, и прогнозировать будущее на основании текущих темпов, мы вправе утверждать, что компьютеры сравняются по возможностям с человеческим мозгом в ближайшие два-три-четыре десятилетия (в зависимости от того, как оценивать сложность процессов обработки информации в человеческом мозге).

Провал первоначальных, чрезмерно оптимистичных прогнозов относительно создания полноценного ИИ на несколько десятилетий заглушил разговоры о технологической сингулярности, но после публикации работы Рэя Курцвейла «Сингулярность рядом» (2005) идея технического развития, ведущего к появлению суперинтеллекта, снова обрела силу. Кое-кто, включая самого Курцвейла, стал рассматривать эту сингулярность как возможность прорыва: мол, люди смогут объединить свои сознания со сверхразумом и тем самым обрести вечную жизнь. Стивен Хокинг и Илон Маск высказали опасения, что этот суперинтеллект окажется злонамеренным, и расценивали его как величайшую из нынешних угроз существованию человеческой цивилизации. Третьи, в том числе некоторые из авторов настоящей книги, полагают, что подобные опасения преувеличенны.

Труды Винера и то обстоятельство, что он не сумел предугадать последствия развития кибернетики, неразрывно связаны с представлением о приближении технологической сингулярности. Его деятельность в сфере нейробиологии и первоначальная поддержка, которую он оказывал Маккаллоку и Питтсу, позволили разработать современные, поразительно эффективные методы глубинного обучения. За последнее десятилетие, особенно в последние пять лет, такие методы глубинного обучения наконец-то привели к возникновению, если воспользоваться одним из терминов Винера, гештальта: машина, например, способна распознавать в круге круг, даже если он наклонен и выглядит как эллипс. Винеровские концепции управления вкупе с изучением нейромышечной обратной связи имели большое значение для развития робототехники и послужили основой для разработки нейронных интерфейсов «человек/машина». Однако однобокость его технологических прогнозов побуждает воспринимать идею технологической сингулярности с немалой осторожностью. Общие затруднения технологического прогнозирования как такового и проблемы, свойственные разработке суперинтеллекта, удерживают меня от избыточного энтузиазма в отношении как вычислительной мощности, так и эффективности обработки информации.

Никакое экспоненциальное развитие не длится бесконечно. Атомный взрыв распространяется по экспоненте, но только пока не кончится его «топливо». Точно так же экспоненциальный прогресс по закону Мура начинает сталкиваться с пределами, налагаемыми физикой. Тактовая частота компьютеров достигла максимума в несколько гигагерц полтора десятилетия назад, далее чипы начали плавиться от нагрева. Миниатюризация транзисторов столкнулась с квантово-механическими проблемами вследствие туннелирования[24] и утечек тока. Рано или поздно различные экспоненциальные улучшения памяти и обработки информации по закону Мура достигнут предела. Впрочем, возможно, что нескольких десятилетий окажется достаточно для того, чтобы вычислительные мощности машин сравнялись с мощностью человеческого мозга – по крайней мере, по грубым показателям количества битов и битовых переходов в секунду.

Человеческий мозг чрезвычайно сложен и представляет собой плод миллионов лет естественного отбора. В эпоху Винера понимание архитектуры мозга было элементарным и упрощенным. С тех пор все более чувствительные инструменты и методы визуализации показали, что мозг гораздо разнообразнее по структуре и сложнее по функциям, чем мог вообразить Винер. Недавно я спросил Томазо Поджо[25], одного из пионеров современной нейробиологии, способны ли, по его мнению, компьютеры с их быстрорастущей вычислительной мощностью вскоре имитировать функционирование человеческого мозга. «Ни в коем случае», – ответил он.

Последние достижения в области глубинного обучения и нейроморфных вычислений очень точно воспроизводят некоторые особенности человеческого интеллекта, деятельность коры головного мозга, где обрабатываются и распознаются образы. Эти достижения позволили компьютеру победить чемпионов мира по шахматам и по игре в го, что нельзя не признать выдающимся результатом, но мы по-прежнему далеки от того, чтобы компьютеризированный робот мог полноценно убираться в помещении. (Вообще-то, роботы, обладающие хотя бы подобием широкого диапазона гибких человеческих движений, еще далеки от совершенства; рекомендую почитать материалы по запросу «ошибки роботов». Роботы успешно справляются с прецизионной сваркой на сборочных линиях, но до сих пор не в состоянии завязать шнурки.)



Сама по себе мощность обработки информации не означает разнообразия способов такой обработки. Пусть мощность компьютеров росла экспоненциально, программы, с помощью которых работают компьютеры, часто вообще не развивались. Как правило, компании-разработчики программного обеспечения реагируют на рост вычислительной мощности добавлением «полезных» функций, которые нередко затрудняют использование этого программного обеспечения. Так, офисная программа Microsoft Word достигла некоего идеала в 1995 году и с тех пор медленно гибнет под «весом» дополнительной функциональности. Как только развитие по закону Мура начнет замедляться, разработчики программного обеспечения столкнутся с непростым выбором между эффективностью, скоростью и функциональностью.

Главный страх сторонников идеи сингулярности заключается в том, что по мере все большего вовлечения компьютеров в разработку собственного программного обеспечения они быстро начнут развивать себя ради достижения сверхчеловеческих вычислительных возможностей. Но практика машинного обучения показывает на движение в противоположном направлении. Чем мощнее и способнее к обучению становятся машины, тем усерднее они обучаются, как и люди, усваивая множество полезных уроков и зачастую под наблюдением учителей (людей и машин). Обучение для компьютеров оказывается столь же сложным и медленным процессом, каким оно является для подростков. Следовательно, системы, основанные на глубинном обучении, становятся все более, а не менее человекоподобными. Навыки, которые они привносят в обучение, не «лучше человеческих», но комплементарны человеческому обучению: компьютерные системы способны распознавать модели, недоступные людям, – и наоборот. Лучшие шахматисты мира – это не компьютеры и люди по отдельности, а люди, работающие вместе с компьютерами. Киберпространство действительно населено «злонамеренными» программами, но они в основном имеют форму вредоносных программ (malware) – вирусов, известных своей злобной бессмысленностью, а отнюдь не суперинтеллектом.

24

В данном случае речь идет о т. н. туннельном эффекте в квантовой механике, когда частицы преодолевают энергетический барьер, величина которого превышает энергию этих частиц.

25

Американский когнитивист и кибернетик, директор центра биологического и компьютерного обучения МТИ.