Добавить в цитаты Настройки чтения

Страница 3 из 9

Рис.2 Главные энергетические характеристики наиболее распространенных ветродвигателей

Существуют два способа регулирования мощности. Первый способ – поворотом лопасти относительно направления ветра, изменяя так называемый «угол атаки», то есть угол, под которым ветер набегает на лопасть и от которого зависит «подъемная» сила лопасти, которая преобразуется в ее вращение. Этот способ по-английски называется «питч-регулирование» (pitch – «ставить», то есть лопасть принудительно ставится в определенное положение). Ветроустановки с поворотом лопастей можно использовать для регулирования мощности как в зависимости от скорости ветра, так и по заданию диспетчера. При этом наибольшая возможная мощность определяется скоростью ветра.

Второй способ заключается в том, что профиль лопасти выполняется различным по длине. В результате при увеличении скорости ветра на отдельных частях лопасти наступает, срыв потока и ее «подъемная» сила уменьшается. Таким образом, при скорости ветра выше номинальной удается держать мощность ветроустановки равную номинальной. Способ называется «стол» (stall – «застревать»), то есть часть потока ветра как бы застревает и не производит работу. В ветроустановках такого типа принудительно регулировать мощность нельзя. И это их недостаток. Но их достоинство состоит в том, что не нужен сложный механизм поворота лопастей. Тем не менее, практически во всех мощных ВЭУ используется первый способ. Коэффициент использования энергии ветра Ср зависит от многих конструктивных особенностей, но, в конечном счете, от профиля лопасти и от степени ее шероховатости, а также от соотношения между скоростью вращения лопастей и скоростью ветра, называемом коэффициентом быстроходности. Этот коэффициент определяет, в конечном счете, экономичность ветроустановки.

Ветроустановку характеризуют следующие параметры ветра:

– стартовая скорость ветра, обычно в диапазоне от 2,5 до 4,0 м/с, при которой ВЭУ начинает вращение;

– номинальная скорость ветра, обычно от 10 до 14 м/с, при которой мощность ветроустановки достигает номинального значения;

– максимальная скорость ветра, при которой ветроустановка отключается от сети и останавливается, обычно в диапазоне 20-25 м/с.

Существует еще так называемая «буревая скорость ветра». Это скорость, при которой остановленная ветроустановка не должна разрушаться (обычно от 60 до 80 м/с).

Принято считать, что крупные ВЭУ целесообразно устанавливать в месте, где среднегодовая скорость ветра не ниже 5 м/с. Для оценки количества электроэнергии, которое будет произведено данной ВЭУ за год, необходимо также знать усредненную по многолетним наблюдениям вероятность наличия ветра с той или иной скоростью. На этом основании вычисляется коэффициент использования установленной мощности (Киум) и представляет собой отношение действительной выработки электроэнергии к максимально возможной, т. е. максимальное значение коэффициента равно единице или 100%. Для традиционных электростанций он колеблется от 0, 4 до 0, 8. Что касается ветростанций, то их Киум в Европе в среднем составляет 0,2-0,3, но зависит он в основном от ветровых условий. Есть примеры ВЭС, где он равняется 0,4 и выше. Для благоприятных мест с более или менее постоянным ветром (ущелья, горные хребты, шельф) этот показатель может достигать 3000 ч/год (коэффициент использования установленной мощности около 0,3).

По величине энергии проходящей на один кв. метр обметаемой поверхности существует подразделение местности на семь классов. Фактически это подразделение местности по среднегодовой скорости ветра на высоте 50 м над поверхностью. Названия классов и их характеристика приводятся в таблице 1.

Эти данные являются ориентиром для выбора площадки сооружения ВЭС большой мощности. Для ВЭУ малых мощностей это не является решающим фактором. Срок энергетической окупаемости ветроустановки (или любой другой электростанции) —это термин, обозначающий за какое время ветроустановка (или электростанция другого типа) выработает количество энергии, равное количеству, затраченному на её производство, монтаж (строительство), обслуживание и утилизацию. По оценкам Британской и Американской ветроэнергетических ассоциаций этот срок для ВЭУ составляет от трёх до восьми месяцев (в зависимости от среднегодовой скорости ветра) – это один из самых коротких сроков всех видов электроустановок, тогда как для угольных и атомных электростанций он составляет шесть и более месяцев.

Другая оценка этого явления – «коэффициент энергетической эффективности» – это отношение энергии, выработанной ветроустановкой (или любой электростанцией) за срок службы к энергии, затраченной на производство установки, строительство, обслуживание и утилизацию ветроустановки (или любой другой электростанции). По исследованиям университетов США, коэффициент энергетической эффективности ветростанций Среднего Запада Америки составил от 17 до 39 (в зависимости от среднегодовой скорости ветра. В то время как для атомных электростанций он оказался равным – 16, а для угольных – 11.

Таблица 1. Классификация ветроэнергетических ресурсов на высотах 10 и 50 м от поверхности земли

Класс

Высота 10 м

Высота 50 м

Скорость ветра, м/с

Удельная мощность, Вт/

Скорость ветра, м/с

Удельная мощность, Вт/

1

0–4,4

0–100

0–5,6

0–200

2

4,4–5,1

100–150

5,6–6,4

200–300

3

5,1–5,6





150–200

6,4–7,0

300–400

4

5,6–6,0

200–250

7,0–7,5

400–500

5

6,0–6,4

250–300

7,5–8,0

500–600

6

6,4–7,0

300–400

8,0–8,8

600–800

7

7,0–9,0

400–1000

8,8–11,9

800–1200

Ветроустановки рассчитываются на срок службы 20-25 лет. В течение этого срока из основных механизмов возможна замена лопастей

Глава 2. Классификация ветроэнергетических установок

Трудно найти другую область науки и техники, где было бы зарегистрировано столько же патентов на конструкции ветроэнергетических установок, а в особенности конструкций ветроколёс (ВК). Дадим такую укрупнённую классификацию конструкций ВК:

–использующие подъёмную силу – Y;

–использующие силу сопротивления X.

1. Использующие подъемную силу. Данные ВЭУ преобладают в мировой ветроэнергетике, т.к. могут развивать линейную скорость конца лопасти (совпадает с направлением действия подъёмной силы Y), значительно больше скорость ветрового потока V. Прямоугольник аэродинамических сил, действующих на крыло представлен на рис.3. В аэродинамический каплевидный профиль сечения лопастей ветроколеса и ветроротора под воздействием ветрового потока обеспечивает подъемную силу на лопастях за счет возникновения разности скоростного течения ветровых струй вдоль их плоскостей. Преобразование подъемной силы лопастей и, соответственно, крутящего момента на приводном валу ветроколеса или ветроротора в механическую энергию обеспечивается редуктором-мультипликатором, а затем, при необходимости, электрогенератором в электроэнергию

Ветроколеса современных ветроагрегатов собираются из нескольких лопастей, закрепленных на втулке. Лопасти имеют аэродинамический профиль, при обтекании которого возникает подъемная сила, вращающая ветроколесо. Расчет и проектирование ветроколеса базируется на законах аэродинамики, изучающей движение воздуха и его взаимодействие с поверхностью крыла при его обтекании.