Добавить в цитаты Настройки чтения

Страница 4 из 7

– воздушный зазор между стеклом и абсорбером – 25–35 мм. При меньшем размете растут тепло потери, при большем- габариты и вес;

– толщина нижнего теплоизоляционного слоя – 35–50 мм. При меньшем значении, плохая термоизоляция, при большем, растут габариты и вес.

Абсорберы плоских коллекторов бывают цельно листовыми и перьевыми. В перьевых абсорберах к отдельным пластинам прикреплена или приварена трубка, в которой циркулирует теплоноситель. Трубки в таких абсорберах соединяются между собой в виде «арфы» (коллекторный тип).

В цельно листовых абсорберах система распределения теплоносителя бывает в виде «меандра» или же трубки, соединенные коллекторным типом. На рис. 9 представлены перьевые и цельно листовые абсорберы плоских коллекторов. На рис.10 представлены варианты соединения трубок в плоских коллекторах.

В первом варианте соединения трубок, возникает вопрос равномерного распределения жидкостей по каналам. Обычно это достигается увеличением диаметра горизонтальных участков труб коллектора. Во втором варианте, необходимо предусмотреть уклоны для обеспечения вытеснения воздуха при его заполнении.

Самым высокотехнологичным элементом в конструкции абсорбера является специальное поглощающее покрытие. Очевидно, что для повышения эффективности работы необходимо, чтобы это покрытие могло поглощать максимально большую часть тепловой энергии от падающих на поверхность гелио коллектора солнечных лучей, а при нагреве излучало минимальную долю поглощенной энергии в инфракрасном спектре. При отсутствии теплового разбора плоские коллекторы способны нагреть теплоноситель до 190–200°С.

Рис.9 Перьевые и цельно листовые абсорберы плоских коллекторов

Абсорбирующая пластина (абсорбер) покрывается специальным селективным покрытием (обычно черный хром, чёрный никель или напыление оксида титана) для повышения эффективности. Абсорбер может быть изготовлен из различных материалов, таких как медь, алюминий, стекло и может иметь различную форму. Неизменным является то, что абсорбер находится на освещенной солнечным излучением части солнечного коллектора. Для максимального поглощения солнечного излучения на абсорбер наносят специальное поглощающее селективное покрытие. Это покрытие обеспечивает максимально возможное поглощение солнечной энергии, попадающей на абсорбер, при этом препятствует обратному излучению.

В перьевых абсорберах к отдельным пластинам прикреплена или приварена трубка. Трубки в таких абсорберах соединяются между собой в виде арфы или еще это соединение называют коллекторным типом. В цельно листовых абсорберах система распределения теплоносителя может быть различной. Это могут быть трубка в виде меандра или же трубки коллекторного типа, а также может быть применен метод штамповки. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность.

Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности. Также высокая эффективность достигается увеличением площади контакта трубки и медного листа: у формованного листа и паянного соединение она максимальна, у соединения ультразвуковой сваркой – меньше. Используется также алюминиевый экран. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметикам. Повысить эффективность гелио коллектора можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%.

Рис.10.Варианты соединение трубок в плоских коллекторах

Поглощающая способность обозначается символом альфа «α». Излучающая способность – символ эпсилон «ε». Свойства некоторых селективных покрытий представлены в таблице 1.

Оптический КПД солнечного коллектора определяет, какой процент излучения, попадает через прозрачное покрытие на коллектор и поглощается абсорбером. Данный показатель полностью характеризует применяемые материалы защитного прозрачного, материала и покрытия абсорбера, не зависит от климатических факторов и конструктивных и тепловых параметров гелио системы. Наилучшие показатели оптического КПД современных солнечных коллекторов составляют 0,92–0,94.

Мгновенный КПД можно определить по формуле:

Параметры, влияющие на КПД солнечного коллектора:

– интенсивность солнечной энергии;





– температура наружного воздуха;

– конструктивные характеристики солнечного коллектора;

– свойства поверхности абсорбера – материал и толщина листа, – толщина,

– коэффициент теплопроводности тепловой изоляции,

– шаг труб;

– рабочие параметры всей гелиосистемы (расход теплоносителя и его температура на входе).

При сравнении различных материалов, используемых для изготовления абсорбера, – меди, алюминия, стали, пластмассы – установлено, что с увеличением произведения толщины листа на его коэффициент теплопроводности, значение КПД коллектора возрастает.

Расстояние между трубками в плоском абсорбере обычно меняется от 50 до 150 миллиметров, при этом, его КПД меняется от 0,989 до 0,948 если он выполнен из меди, от 0,88 до 0,934, для алюминия и 0.984 до 0,819 для стали. Уменьшение диаметра трубок снижает эффективность на 2–4 %.

Расстояние между трубками в плоском абсорбере обычно меняется от 50 до 150 миллиметров, при этом, его КПД меняется от 0,989 до 0,948 если он выполнен из меди, от 0,88 до 0,934, для алюминия и 0.984 до 0,819 для стали. Уменьшение диаметра трубок снижает эффективность на 2–4 %.

Очень большую роль в эффективности работы плоских солнечных коллекторов играют атмосферные факторы, так при уменьшении температуры окружающего воздуха с 25 до 10°С, КПД падает примерно на 25 %. При появлении облачности – в два раза, допустим интенсивность солнечного излучения упала с 1000 до 500 Вт/м², тогда коллектор площадью один квадратный метр произведет примерно в 4 раза меньше тепловой энергии, чем в первом случае. Чем ниже температура входящего теплоносителя, тем выше КПД. Увеличение расхода теплоносителя влечет увеличение КПД до определенной величины и потом остается неизменным.

Таблица 1 Свойства селективных покрытий

Важным фактором также является качество селективной поверхности абсорбера. У лучших, показатель их эффективности составляет 0,96, в то время, как простая черная краска имеет данный показатель на уровне 0,5.

На рис.11 показаны зависимости мгновенного КПД закрытого плоского солнечного коллектора с высокоселективной поверхностью абсорбера от интенсивности солнечного потока (1000, 800, 500, 300 Вт/м², разности температур теплоносителя и окружающего воздуха, при наилучших показателях оптического КПД (0,82) и углу падения солнечных лучей перпендикулярно поверхности при коэффициенте потерь, равным 7 Вт/ м²°С.

Для обеспечения простого и быстрого гидравлического подключения, например, гелиоколлектор Logasol SKN3.0, рис. 12, оснащен патрубками для шлангов.

Рис.11 График сравнения тепловой эффективности разных солнечных коллекторов при солнечном излучении мощностью 600 Вт/м²: 1 – вакуумный коллектор (трубчатого типа); 2 – плоский солнечный коллектор (селективное покрытие); 3 – солнечный коллектор открытого типа