Добавить в цитаты Настройки чтения

Страница 14 из 19

Частично из-за того, что меня так впечатлили исследованияя Джилл, частично из моих собственных научных интересов я все больше хотела с ней встретиться. За четыре года до этого я перешла из Йельского университета в Беркли и переехала в Калифорнию вместе с Джейми Кейтом, который теперь стал моим мужем, и нашим новорожденным сыном Эндрю. Хотя мои текущие исследования уже развивались в некоторых новых направлениях, я надеялась расширить лабораторию и запустить в ней несколько дополнительных проектов, одновременно наладив рабочие связи с новыми коллегами. Возможно, сотрудничество с Джилл – это именно то, чего я ищу.

Мы с Джилл встретились на следующей неделе в кафе Free Speech Movement недалеко от входа в одну из студенческих библиотек кампуса. Был ветреный весенний день, и, когда я пришла в кафе, Джилл уже расположилась во внутреннем дворике, за одним из мраморных столиков. На столе лежали блокнот и стопка бумаги. Мы немного поболтали, а затем Джилл открыла блокнот и перешла к делу.

Она быстро набросала схему CRISPR. Сначала изобразила большой овал, он обозначал бактериальную клетку. Затем внутри овала нарисовала круг – бактериальную хромосому, а на одной из его сторон – чередующиеся квадратики и ромбики, символизирующие конкретный участок ДНК. Этот участок, очевидно, и представлял собой CRISPR.

Джилл заштриховала ромбики и объяснила, что все они представляют собой одинаковые последовательности примерно из тридцати “букв” ДНК. Затем она последовательно пронумеровала квадратики, начиная с цифры 1, и сказала, что каждый из них включает в себя уникальную последовательность ДНК.

Наконец я начала понимать слова, скрывавшиеся за аббревиатурой CRISPR: кластерные короткие палиндромные повторы, разделенные регулярными промежутками. Ромбики были короткими повторами, а квадратики – регулярными промежутками, которые их разделяли, и эти последовательности ромбиков и квадратиков были сгруппированы в кластеры на одном участке хромосомы, а не разбросаны по ней. Уже потом, когда я более детально ознакомилась с повторяющимися последовательностями ДНК в своем рабочем кабинете, значение буквы “P” в аббревиатуре тоже стало мне понятным: последовательности при чтении их в противоположных направлениях “звучали” практически одинаково – словно палиндром вроде “нажал кабан на баклажан”[44].

Сама идея, что клетки могут нести в себе повторяющиеся последовательности ДНК, не нова: более 50 процентов генома человека – существенно больше миллиарда “букв” ДНК – это различные типы повторяющихся последовательностей, и некоторые из них представлены миллионами копий. Хотя геномы бактерий сравнительно небольшие, они тоже содержат повторяющиеся последовательности. Я знала о нескольких типах, в названии которых даже присутствовали некоторые слова из расшифровки CRISPR: повторяющиеся экстрагенные палиндромы (REP) и бактериальная, рассеянная по геному, повторяющаяся ДНК (BIME). Но я никогда раньше не слышала о последовательностях ДНК, повторяющихся так точно и настолько унифицированных, чтобы все повторы действительно совпадали друг с другом и всегда были отделены от соседей последовательностями-спейсерами близкой длины, но со случайным набором нуклеотидов.

Желая узнать больше об этих странных участках бактериальной ДНК, я спросила Джилл, каковы их биологические функции, но, к моему разочарованию, Джилл ответила, что ничего об этом не знает. Однако в ее лаборатории обнаружили важную зацепку[45]. Последовательности ДНК бактерий природных популяций показали, что буквально каждая клетка в них содержит уникальный вариант CRISPR, поскольку разделяющие регулярные повторы промежутки у каждой клетки отличаются. Это было совершенно необычно, поскольку все остальные участки ДНК у этих клеток практически совпадали. Джилл поняла, что CRISPR, скорее всего, эволюционируют быстрее всех остальных областей генома, а это указывает на то, что их функция – быстро меняться или адаптироваться в ответ на некий вызов из внешней среды, с которым сталкиваются клетки.

CRISPR внутри бактериальной клетки

Годами ранее испанский профессор Франсиско Мохика в своей новаторской работе[46] обнаружил те же повторы у множества совершенно не родственных друг другу видов, включая архей – одноклеточных организмов, которые, как и бактерии, не имеют ядер. (Бактерии, археи – их собирательное название “прокариоты” – и эукариоты представляют собой три домена, включающих все формы жизни на Земле.) CRISPR, по словам Джилл, обнаружили в половине бактериальных геномов, секвенированных на тот момент, и почти во всех геномах архей. Выходило, что кластерные палиндромы – наиболее распространенный тип повторяющихся последовательностей ДНК у всех прокариот.

Эти факты заставили меня буквально задрожать от любопытства: если CRISPR присутствует у такого большого количества видов, то с высокой вероятностью природа использует этот инструмент для чего-то важного.

Я внимательно слушала, а тем временем Джилл вытащила из стопки бумаг три статьи, все 2005 года[47], и оживленно пересказала их суть. Три коллектива исследователей (один из них – под руководством Мохики) независимо друг от друга обнаружили, что многие спейсеры CRISPR – те фрагменты ДНК, что встроены между повторяющимися последовательностями, – точно совпадают с ДНК известных бактериофагов. Что еще интереснее, возникало ощущение, что между числом последовательностей ДНК в бактериальной CRISPR, совпадающей с вирусной ДНК, и числом вирусов, способных поразить эту бактерию, существует обратная зависимость: чем больше совпадений, тем ниже вероятность инфицирования. Собственное новаторское исследование Джилл[48], в котором геномы целых микробных сообществ были восстановлены секвенированием небольших, перекрывающих друг друга фрагментов ДНК и их сборкой в одну более длинную последовательность, также показало, что многие разделенные регулярными промежутками последовательности на содержащем CRISPR участке хромосомы соответствовали последовательностям вирусной ДНК, обнаруженным в окружающей бактериальные сообщества среде.

В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.

Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина[49], она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” (A Putative RNA-Interference-Based Immune System in Prokaryotes). Этот заголовок моментально привлек мое внимание. Хотя в этой статье, как и в трех предыдущих, явно недоставало убедительных экспериментальных данных, ее авторы проделали значительную работу, собрав всю доступную информацию о CRISPR. Сопоставив результаты множества более ранних исследований с экспертной оценкой распространения CRISPR у различных видов, они собрали из этих кусочков заманчивую новую гипотезу о том, что РНК служит ключевой составляющей иммунной системы одноклеточных организмов, таких как бактерии, и что эта система может быть функционально сходной с одним из объектов моих исследований, РНК-интерференцией.

Джилл не смогла бы найти лучшей приманки, чтобы завлечь меня в свои исследования. Не только вся моя научная деятельность до того момента была посвящена изучению молекул РНК, но я еще все больше концентрировалась на процессах РНК-интерференции в человеческих клетках. А тут еще Макарова и Кунин предполагали, что CRISPR представляет собой бактериальный аналог РНК-интерференции. Если это было верно, то моя лаборатория отлично подходит для того, чтобы разобраться с этим новым загадочным биологическим явлением. А перспективы были более чем соблазнительными, поскольку никто еще не провел экспериментов для подтверждения или опровержения теорий о биологическом смысле CRISPR – все только и делали, что плодили эти теории. Для биохимиков, таких как я, это был идеальный момент, чтобы ввязаться в борьбу за понимание того, как работает и для чего нужен CRISPR.





44

В оригинале – senile felines.

45

G. W. Tyson and J. F. Banfield, “Rapidly Evolving CRISPRs Implicated in Acquired Resistance of Microorganisms to Viruses”, Environmental Microbiology 10 (2008): 200–207.

46

F. J. Mojica et al., “Biological Significance of a Family of Regularly Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria”, Molecular Microbiology 36 (2000): 244–246.

47

F. J. Mojica et al., “Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements”, Journal of Molecular Evolution 60 (2005): 174–182; C. Pourcel, G. Salvignol, and G. Vergnaud, “CRISPR Elements in Yersinia pestis Acquire New Repeats by Preferential Uptake of Bacteriophage DNA, and Provide Additional Tools for Evolutionary Studies”, Microbiology 151 (2005): 653–663; A. Bolotin et al., “Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin”, Microbiology 151 (2005): 251–261.

48

A. F. Andersson and J. F. Banfield, “Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities”, Science 320 (2008): 1047–1050.

49

K. S. Makarova et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action”, Biology Direct 1 (2006): 7.