Добавить в цитаты Настройки чтения

Страница 12 из 19

Однако, несмотря на свою кажущуюся перспективность, белки ZFN никогда не применялись широко за пределами небольшого числа лабораторий. Исследователи, использовавшие эти нуклеазы, либо сами обладали громадным опытом в области белковой инженерии, либо сотрудничали с теми немногими лабораториями, в которых подобные эксперименты уже проводились, либо могли позволить себе платить баснословные деньги за нуклеазы, сконструированные на заказ. В теории создание ZFN было простым: нужно было просто соединить различные фрагменты белков с цинковыми пальцами, чтобы они распознавали последовательность ДНК, которую исследователь желает отредактировать. Однако на практике это было очень сложно. Большая доля создаваемых ZFN попросту не распознавали те последовательности ДНК, которые должны были распознавать; другие были слишком неразборчивы и воздействовали на первые попавшиеся участки ДНК, лишь отдаленно похожие на целевые, и убивали клетки, геном которых должны были отредактировать. В других случаях фрагмент с цинковыми пальцами успешно распознавал ДНК, однако нуклеазный фрагмент не разрезал ее.

Подобно тому как изменение I-SceI оказалось слишком сложной задачей, так и ZFN тоже, как выяснилось, было нелегко перепрограммировать, чтобы использовать в качестве универсального инструмента редактирования генома. Конечно, результаты экспериментов с ZFN убедительно доказали, что специально видоизмененные нуклеазы полезны, если редактирование генома – самоцель, однако в этой области науки все еще нужна была новая технология, более надежная и простая в использовании.

Такая технология – или, по крайней мере, первая ее версия – была открыта в 2009 году при изучении новых типов белков, найденных в патогенных бактериях рода Xanthomonas, поражающих растения. Эти белки, которые были названы активатороподобными эффекторами транскрипции (transcription activator – like effectors, TALE), были удивительно похожи по своему строению на белки с цинковыми пальцами: они состоят из многократно повторяющихся фрагментов, и каждый фрагмент распознает определенную область ДНК. Однако от белков ZNF их отличала важная деталь: в то время как каждый “палец” в последних распознает трехбуквенную последовательность ДНК, каждый фрагмент TALE-белков узнает всего одну “букву” ДНК. Это различие позволило ученым легко определить закономерность, по которой фрагмент будет распознавать определенную “букву” ДНК, и затем они просто расположили эти фрагменты один за другим таким образом, чтобы они распознавали более длинную последовательность ДНК в гене. В случае ZFN это лишь казалось легко сделать, однако с TALE процедура в самом деле была простой.

Ученые быстро взялись за исследование новейшей “зацепки”. Вскоре после того, как был расшифрован этот код, три лаборатории соединили белки TALE с теми же режущими ДНК фрагментами, что есть в ZFN, и создали нуклеазы TALE, или TALEN. TALE-нуклеазы были очень эффективны для инициации редактирования генома внутри клеток, и после того как удалось еще несколько усовершенствовать их строение, стало очень похоже на то, что TALEN будет гораздо проще создавать и применять, чем ZFN.

“Но как жаль бедняжек TALEN”[41], – писала Дана Кэрролл в статье, описывающей историю появления редактирования генома. Потому что, как только TALEN обнаружили и адаптировали для редактирования, их вытеснило следующее, и возможно последнее, открытие в области редактирования генома. Эта технология получила название CRISPR, и здесь моя история соединяется с историей редактирования генома – и вообще с этим длинным маршем истории науки, которая в тот момент подошла к порогу новой головокружительной эры.

Глава 2

Новая защита

В 2014 году я отметила двадцатилетие своей исследовательской лаборатории (и заодно мое пятидесятилетие) выездом сотрудников в места моего детства: на Гавайи. Около тридцати участников празднования (сборная солянка из студентов, аспирантов, постдоков, технических работников и близких, в числе которых оказался даже мой сын Эндрю) оккупировали три арендованных домика рядом с городом Кона на западном берегу Большого острова – всего в пятнадцати минутах от пляжа и нескольких часах езды от дома в Хило, в котором прошло мое детство. Днем мы устраивали пикники, бродили по Гавайскому вулканическому национальному парку, отправлялись на ближайшие пляжи или рынки и плавали с маской и трубкой среди нетронутых коралловых рифов, окружающих остров. Мы провели незабываемый вечер, наслаждаясь захватывающими видами красноватых отсветов от потоков лавы из кратера Халемаумау, а в другие вечера устраивали непринужденные вечеринки на задних двориках наших домов: общение, пицца и пиво, спонтанные танцы и караоке.

Конечно, как и на любом научном сборище, часть времени была посвящена выступлениям. За четыре дня мы провели четыре мини-симпозиума, на которых каждый сотрудник сделал пятнадцатиминутный доклад на выбранную им самим тему – от истории лаборатории до тонкостей структуры РНК.

На четвертый день постдок Росс Уилсон, взявший на себя большую часть забот по организации нашего путешествия, встал, чтобы прочесть последний доклад. Точнее, я думала, что это будет доклад. Но вместо этого Росс сделал нам сюрприз, показав короткий фильм, смонтированный из фрагментов видео, в которых фигурировала я сама. Оказывается – и я ничего об этом не знала! – коробка со старыми VHS-кассетами все эти годы передавалась от одного поколения сотрудников к другому: своего рода традиция лаборатории.





Гости то издавали одобрительные возгласы, то подтрунивали надо мной, пока один кадр на экране сменялся другим: вот я выступаю с благодарственной речью на церемонии награждения премией Национального научного фонда в 1999-м, вот мое фото со счетчиком Гейгера в руках в одном из номеров Vogue за 2000 год, а вот и отрывок из документального фильма, который Фредерик Уайзман снимал в моей лаборатории, к тому моменту переместившейся из Йельского университета в Калифорнийский университет в Беркли.

В этой нарезке оказались и фрагменты из двух новостных сюжетов, в которых я в свое время появлялась, и в обоих шла речь о первом крупном открытии, сделанном в моей лаборатории в Йеле в 1996 году. Я помнила о существовании этих видео, помнила даже кое-какие детали их содержания. В то время внезапный всплеск внимания к моей работе меня одновременно и радовал, и немного нервировал – ведь я тогда была молодой исследовательницей, проводившей большую часть времени за рабочим столом, в уединении своей лаборатории.

Из всех эпизодов в фильме Росса эти два вызвали самую бурную реакцию. Они казались такими безнадежно древними: начальнице всего около тридцати, ведущие выглядят и говорят старомодно, и в кадре видны громоздкие допотопные компьютеры, которые в то время, конечно, были последним словом техники.

Пока я веселилась вместе со всеми остальными, память уносила меня в те ранние годы моей работы в Йеле, и я вновь ощутила те надежды и страхи, которые испытала, когда двинулась в новую рискованную область исследований, начала работу над проектом, из которого, как предостерегали меня многие коллеги-ученые, никогда ничего не получится. Глядя теперь на то, как я в молодости отвечала на вопросы интервьюеров, я живо вспомнила и воодушевление, и ощущение тяжелой утраты – главные чувства, сопровождавшие меня в те годы. Мои тогдашние комментарии оказались на удивление точным предсказанием того, что произошло значительно позднее, по мере того как разворачивались мои исследования по новым направлениям.

Во времена, когда я давала эти интервью, моя лаборатория только что установила трехмерную структуру – точное расположение каждого атома – в молекуле рибонуклеиновой кислоты (РНК), образующей часть более крупной молекулы под названием самосплайсирующий рибозим. В 1980-х годах Том Чек, мой научный руководитель в Университете штата Колорадо в Боулдере, получил Нобелевскую премию за обнаружение самосплайсирующих рибозимов[42]. Его открытие было прорывом, поскольку существование самосплайсирующих рибозимов предполагает, что жизнь на Земле могла возникнуть из молекул РНК, способных и кодировать генетическую информацию, и копировать ее в примитивных клетках. Когда в 1994 году я возглавила собственную лабораторию в Йеле, я собиралась отталкиваться в своей работе от открытия Тома – изучить структуру рибозимов, чтобы лучше понять, как они работают. Я хотела определить, каким образом РНК – молекула, тесно связанная с ДНК, – может функционировать и в качестве хранилища генетических инструкций, и в качестве химически активной молекулы, способной изменять свою форму и биологическое “поведение”. Кульминацией этого исследования стало фантастически волнующее открытие: молекулы РНК могут складываться в трехмерные структуры, совершенно непохожие на изящную в своей простоте двойную спираль ДНК.

41

S. Chandrasegaran and D. Carroll, “Origins of Programmable Nucleases for Genome Engineering”, Journal of Molecular Biology 428 (2016): 963–989.

42

Если точнее, премию Чеку дали за обнаружение автокаталитических свойств рибозимов – то есть не только их способности к сплайсингу (сшиванию фрагментов) самих себя, но и их способности к разрезанию самих себя.