Добавить в цитаты Настройки чтения

Страница 9 из 9



Параметрические методы

Что же это за параметры, на которых будет базироваться обработка наших данных? Нашу выборку мы можем описать определённым образом, используя для этого ряд характеристик. Самое простое, что проходят даже в школе, – это среднее. Из нашей выборки 42, 43, 43, 42, 45, 46, 40, 41, 41, 42 мы можем легко найти среднее, просто сложив все числа и поделив их на количество элементов в выборке: 42+43+43+42+45+46+40+41+41+42 = 425, 425: 10 = 42.5. Чуть сложнее находится среднеквардратическое отклонение и ряд других параметров. Параметрические методы названы параметрическими, так как они основываются на оценке полученного распределения.

Однако иногда среднее может нам ничего не сказать. Самая простая ситуация – средняя температура по больнице. Если выборка будет достаточно большой, то средняя температура в любом отделении больницы может оказаться в норме, но это вовсе не будет говорить о том, что пациенты здоровы. Однако температура человека находится в строго определённых пределах и, безусловно, будет подчиняться закону нормального распределения. Что же мы тогда сможем узнать, найдя среднюю температуру в больнице? Мы только опишем наше распределение: температура человека, как правило, будет близка к 37 °C.

Среднеквадратическое отклонение (СКО) в статистике показывает, насколько широк разброс в нашей выборке. Например, для нашей выборки оно будет равно примерно 1.75. Как правило, СКО записывается через знак ±. Тогда мы получаем, что нашу выборку можно описать как минимум так: 42.50±1.75. Это означает, что большая часть элементов выборки находится в пределах от 42.50-1.75 = 40.75 до 42.50+1.75=44.25. В данном случае мы записываем именно 42.50, а не 42.5, так как этого требуют правила математической записи: в СКО у нас получилось 2 знака после запятой.

Среднее и СКО не всегда хорошо описывают выборку, об этом надо помнить. Если распределение асимметрично, данные будут искажены. Для описания таких выборок есть медиана. Если вновь провести аналогию с геометрией, как мы делали ранее для доказательств, то медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис. 6).

Рис. 6. В треугольнике ABC отрезок AM является медианой, то есть разделяет сторону BC пополам

Аналогичную функцию медиана выполняет в статистике применительно к распределению величин. Медиана в статистике – это такое значение, которое разделяет распределение пополам, то есть половина значений распределения больше медианы, а половина – меньше (рис. 7). Мода – ещё один статистический параметр, обозначающий значение, которое встречается наиболее часто в нашей выборке.

Рис. 7. Среднее, медиана и мода. Слева направо: ассимметричное распределение, нормальное распределение и ассимметричное распределение

Как видно из рис. 7, для идеального нормального распределения среднее и медиана должны совпасть (как и в случае с равнобедренным треугольником), однако если нам нужна информация о том, какое именно значение находится в середине асимметричного распределения, медиана будет гораздо предпочтительнее. Кроме медианы, существуют так называемые процентили, наиболее часто из них используются квартили, то есть 25-й и 75-й процентили. Эти показатели показывают четверть наибольших и наименьших показателей в распределении. Сама медиана считается 50-м процентилем (рис. 8).

Рис. 8. Распределение с обозначенными минимальным и максимальным значениями, а также медианой и 25-м и 75-м процентилями

Итак, получается, что если наше распределение имеет вид идеальной гауссианы, мы легко можем оперировать параметрами распределения, но если распределение отличается от нормального, нам начинает не хватать среднего и СКО, необходимо вводить другие характеристики, такие как процентили и медиана.

Так как эти статистические характеристики наиболее понятны и просты, параметрические методы в статистике получили большую популярность. Практически ни одно исследование не обходится без их применения. Возраст, масса тела, рост, некоторые биохимические показатели – эти характеристики вполне соответствуют нормальному распределению, а значит, данные можно обрабатывать параметрикой. К параметрическим методам относятся, например, t-критерий Стьюдента, знакомый многим студентам, например по выполнению лабораторных по физике.



Критерий Стьюдента. Самый любимый и самый понятный! По сути он является частным случаем более сложного метода анализа, однако при изучении статистики рациональнее всегда начинать с изучения именно критерия Стьюдента. Данный метод позволяет нам сравнить, насколько отличаются две выборки друг от друга. В англоязычной литературе чаще называется просто t test (подозреваю, что это из-за сходства в написании Student [Стьюдент] и student [студент], что значительно усложняет поиск в Интернете).

Существует два типа t-теста:

• для независимых выборок, когда две сравниваемые группы никак друг от друга не зависят;

• парный (paired) для зависимых выборок, когда две сравниваемые группы зависят друг от друга.

Как правило, критерий применяется в тех случаях, когда испытуемых разделяют на две независимые группы, именно об этом мы и поговорим. Например, пациентов могут разделить на две группы: контрольную, которой дают плацебо, и ту, на которой испытывают реальные лекарства (экспериментальная группа). Таким образом, мы можем получить сразу много данных о каждой группе: какими были интересующие нас показатели (например уровень глюкозы в плазме крови) в группе плацебо до «лечения» и после? А в экспериментальной? Можно сравнить результаты исследований до начала активной фазы исследований и после. Тогда мы поймём, влияет ли как-то наше вмешательство на исследуемые параметры или нет.

Например, наше лекарство должно снижать уровень глюкозы в плазме крови. Если мы честные исследователи, то пациентов в каждую из групп, контрольную и экспериментальную, мы выбирали одинаково по тем же самым параметрам. Значит, и различий между группами по показателю содержания глюкозы в плазме крови до приёма плацебо и лекарства соответственно быть не должно. Но если наше лекарство действует лучше, чем ничего (пустышка-плацебо), значит, после лечения уровень глюкозы должен будет отличаться между группами. Так как глюкоза у нас в организме содержится в строго определённых пределах (меньше и больше определённых значений, к сожалению, означает смерть), а в норме натощак встречается в пределах примерно от 3.5 до 5.5 ммоль/л, можно заранее предположить нормальное распределение. Конечно, наше предположение никак не освобождает нас от необходимости проверки на нормальность: вдруг мы какие-то аномалии получили? Но если нормальность распределения подтверждается, можно использовать t-критерий Стьюдента.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.