Добавить в цитаты Настройки чтения

Страница 27 из 31



В зависимости от того, приносят ли данные финансовые активы доходы или нет, мы будем рассматривать три различных случая. В каждом из этих случаев предполагается, что соблюдаются предположения о рынке 1-4, изложенные выше.

2.3.1. Форвардная цена активов, не приносящих доходов

Такими активами, например, являются облигации с нулевыми купонами и акции, по которым не выплачиваются дивиденды.

Покажем, что форвардная цена F таких активов определяется равенством:

где S – спот-цена активов в текущий момент времени t;

– безрисковая процентная ставка при непрерывном начислении по инвестициям на Т- t лет;

Т – дата поставки активов.

При рассматриваемой стратегии не требуется производить начальных затрат, и эта стратегия не содержит риска.

По условию на рынке отсутствуют прибыльные арбитражные возможности.

то можно произвести короткую продажу базисных активов, полученную денежную сумму инвестировать под безрисковую ставку на Т – t лет и занять длинную позицию по форвардному контракту на эти активы.

Тогда в момент поставки активов будет получен безрисковый доход

что противоречит нашим предположениям о рынке. Следовательно,

Стоимости длинной и короткой позиций по форвардному контракту на активы, не приносящие доходов, определяются равенствами:

Пример 2.2. Найдем форвардную цену акции, не приносящей дивидендов, с поставкой через 3 месяца, если текущая цена акции 40 долл., а безрисковая процентная ставка на 3 месяца равна 3 %.

В данном случае

Тогда

Если на рынке форвардная цена акции оказалась равной 42 долл., то возможна следующая прибыльная арбитражная стратегия: занять 40 долл. на 3 месяца под безрисковую ставку 3 %, купить на спот-рынке акцию и занять короткую позицию по форвардному контракту. В момент поставки акции будет получен доход:

2.3.2. Форвардная цена активов, приносящих известные доходы

Такими активами могут служить купонные облигации или акции с известными заранее дивидендами.



Форвардная цена F активов с известными доходами определяется равенством:

где S – спот-цена активов в текущий момент времени t;

I – приведенное значение доходов, поступающих от активов за время от t до Т;

Т – дата поставки активов.

Стоимости длинной и короткой позиций по форвардному контракту на активы с известными доходами можно найти следующим образом:

Пример 2.3. Найдем форвардную цену акции с поставкой через 8 месяцев, по которой дивиденды в размере 5 долл. ожидаются через 2 и 5 месяцев, если текущая цена акции равна 100 долл., а безрисковые процентные ставки на 2, 5 и 8 месяцев соответственно равны 5, 5,5 и 6 % (при непрерывном начислении процентов).

В данном случае

2.3.3. Форвардная цена активов, обладающих постоянной дивидендной доходностью

Предположим, что доходы от активов выплачиваются в виде самих этих активов, причем так, что за время τ единица активов с учетом накопленных доходов превращается в единиц активов. В этом случае говорят, что активы обладают постоянной дивидендной доходностью при непрерывном начислении.

Иностранную валюту можно рассматривать как актив с постоянной дивидендной доходностью. В самом деле, единицу иностранной валюты можно инвестировать под безрисковую ставку в той стране, где действует эта валюта. Тогда через т лет единица иностранной валюты превратится в единиц этой валюты. Таким образом, иностранная валюта обладает постоянной дивидендной доходностью, и эта дивидендная доходность совпадает с безрисковой процентной ставкой .

Во многих случаях фондовые индексы также можно рассматривать как активы с постоянной дивидендной доходностью.

Форвардная цена F активов с постоянной дивидендной доходностью при непрерывном начислении может быть найдена по формуле:

В этом случае для стоимости длинной и короткой позиций по форвардному контракту имеем равенства:

Пример 2.4. Найдем 8-месячную форвардную цену английского фунта стерлингов, если текущий обменный курс равен 1,8 долл. за фунт, а безрисковые процентные ставки в США и в Англии при непрерывном начислении процентов равны 6 и 4 % соответственно.

2.4. Форвардная цена товаров

Пусть F – форвардная цена некоторого товара в момент времени t с датой поставки Т.

Покажем, что при отсутствии прибыльных арбитражных возможностей справедливо неравенство

Так как данная стратегия не требует никаких начальных затрат и не содержит риска, то это – прибыльная арбитражная стратегия. Следовательно,