Добавить в цитаты Настройки чтения

Страница 5 из 7



На рис. 6 показаны различные положения ракетки в соответствии с переменной направления оси кулака:

Вариант 1) кисть в положении пронация; вариант 2) кисть в среднем положении; вариант 3) кисть в положении супинация.

Обобщение приобретённых знаний:

1. Благодаря изображениям на рисунках 1, 2, 3, 4, 5, 6 получили представление об устройстве опорно-двигательного аппарата и ССЧ (структурной схемы человека).

2. Определили понятия о кинематической структурной схеме человека, комплиментарных рычагах, виртуальных линиях.

3. Также познакомились с некоторыми системами контроля над движением рычагов ССЧ.

В этой книге, в основном, будут рассмотрены кинематические характеристики движения. Но для того чтобы лучше понимать суть организации собственных движений необходимо познакомиться с некоторыми понятиями статики и динамики. Рассмотрим следующие вопросы.

А почему косточки, из которых собрана ССЧ называются рычагами? И что такое рычаг? Какие бывают рычаги?

Глава 3. Рычаги и рычажные конструкции ССЧ

Определим, что рычаг это твёрдое тело, которое может вращаться относительно какой-то оси и участвовать в работе рычажной конструкции.

Рычажная конструкция это механической устройство (механизм) из двух твёрдых тел, в которой одно из них служит опорой (осью вращения), а другое может вращаться относительно первого. Рычажная конструкция преобразует величину и направление силы, приложенной первоначально.

Линейные характеристики рычажной конструкции это расстояния от оси вращения до точек приложения сил. Эти расстояния называются длинами плеч рычага или плечами сил.

Силовые характеристика рычажной конструкции это величины первичной и преобразованной сил на направлениях, которые перпендикулярны к длинам плеч рычага.

Суть действия рычажной конструкций определим из условий её равновесия, которое характеризуется равенством моментов сил приложенных к разным плечам рычага. Моментом силы называется векторное произведение длины плеча силы на величину силы, которая направлена перпендикулярно плечу силы (рис. 7).

Обозначения на рис. 7:

r – радиус-вектор (плечо силы); F – сила, приложенная к концу радиус-вектора и направленная перпендикулярно к нему. Окружность – траектория конца радиус-вектора r; I, II – начальное и конечное положения конца радиус-вектора; Ψ – угол поворота радиус-вектора; М – вектор момента силы.

Пояснения:

• Вариант 1). Начальные положения и направления силы F и радиус-вектора r. Момент силы – векторная величина, которая показывает, что приложенная сила стремиться вращать объект. Такое действие обусловлено наличием у объекта оси вращения и плеча силы. Плечо силы – это кратчайшее расстояние от оси вращения до линии действия силы. В приведенном примере, оно обозначено радиус-вектором «r».





• Вариант 2). Вектор момента силы обозначен как «M». Он лежит на оси вращения объекта (аксиальный вектор) и направлен перпендикулярно плоскости, в которой действует сила и перемещается плечо силы (радиус-вектор). Величина момента силы определяется как векторное произведение силы на ее плечо M = F · r. Направление вектора момента силы устанавливается правилом правовинтового буравчика: «Сила вращает рукоятку буравчика вправо, а направление движения его острия укажет направление вектора момента силы».

При рассмотрении момента силы столкнулись с понятиями о силе, о векторах. Рассмотрим их более подробно.

Силы упоминают, когда говорят о взаимодействии объектов. У нее много различных названий (механическая, магнитная, электрическая, гравитационная и т. д.), а причина одна – энергия.

Механическая сила – это мера взаимодействия объектов, она причина изменения положения, траектории, скорости или деформации объекта, к которому приложена. Поскольку мы рассматриваем только механическую сторону движений, то в дальнейшем будем пользоваться только названием сила.

Сила величина векторная и характеризуется величиной и направлением действия. Графическое изображение силы позволяет составить образ взаимодействия объектов.

Векторные величины обозначаются с помощью букв со стрелочкой или черточками над ними. Векторные величины в графической (геометрической) форме изображаются в виде отрезка линии со стрелочкой. Начало вектора – точка, из которой он исходит, конец вектора – окончание стрелочки. Длина вектора отражает количественное значение величины, а расположение показывает точку приложения и направление её действия.

Как всегда, вооружившись необходимыми знаниями, движемся дальше по выбранному пути. Следующий этап – с помощью понятия о моменте силы определить условия равновесия рычажной конструкции, которое следует вслед за равенством моментов сил, приложенных к разным концам рычага. В качестве примера рассмотрим рычажную конструкцию с участием рычага предплечья и плеча ССЧ. Плечо создаёт ось вращения, а предплечье, как рычаг, противодействует нагрузке, которая поочерёдно направляется на сгибание, а затем на разгибание его относительно плеча (рис. 8).

Обозначения на рис. 8:

Пл – плечо; 0–0 – ось вращения рычага; Пр1, Пр2, Д – точки приложения сил; m – масса нагрузки; Р1, Р2 – силы мышц; L1, L2 – плечи сил соответствующих мышц; Pm – сила, созданная нагрузкой; Lm – плечо силы нагрузки.

Пояснения:

• Предплечье. На рисунке локтевая кость. Окружность в локтевом суставе показывает, что этот сустав блоковидный и нём возможно вращение относительно оси 0–0. Точки Пр1, Пр2 и Д обозначают места прикрепления мышц на проксимальном и дистальном конце рычага. В вариантах 1) и 2) предплечье рычаг между точками Пр1 и Д, который может вращаться относительно оси 0–0. Ось вращения для него создаёт рычаг плеча.

• Вариант 1). Рычажная конструкция 1-го рода. Внешняя нагрузка (Pm), приложена к точке Д и создаёт момент силы (Pm · Lm), который направлен на сгибание предплечья в локтевом суставе. Этот момент силы уравновешивается моментом силы мышц, так как рычажная конструкции трансформирует силу нагрузки и перемещает её на линию действия силы мышц. Условия равновесия рычажной конструкции – момент силы на одном конце рычага равен моменту силы на другом конце рычага (Р1 · L1 = Pm · Lm).

• Варианта 2). Рычажная конструкция 2-го рода. Момент силы внешней нагрузки, которая приложена к точке Д, направлен на разгибание предплечья в локтевом суставе. Условия равновесия рычажной конструкции следуют из равенства моментов сил нагрузки и мышц (Pm · Lm = Р2 · L2).

Линии действия сил в обоих рычажных конструкциях параллельны, но в зависимости от рода рычажной конструкции направления силы мышц различны так как положение оси вращения относительно них различное. В рычажной конструкции 1-го рода ось вращения расположена между силами, а в рычажной конструкции 2-го рода – сбоку от обеих сил.

Какое-то представление о силах и моментах сил получили. Кроме того установили, что рычажные конструкции бывают первого или второго рода. Этого достаточно чтобы рассмотреть очень важный вопрос об организации движений собственных рычагов. В рис. 8 на предплечье точками показаны места прикрепления мышц. Эти точки определяют начала действия векторов сил, которые создают мышцы. Мышцы могут прикрепляться к ближнему или дальнему концам рычага.

В анатомии принято считать ближний к суставу конец рычага как проксимальный, а дальний – как дистальный. По смыслу эти названия характеризуют линейные размеры рычага. Поскольку отсчёт линейных размеров идёт от туловища, то для любого рычага проксимальный конец тот, который ближе к туловищу, а дистальный более дальний. Например, для рычага всей ноги проксимальный конец это суставная головка тазобедренного сустава, а дистальный – стопа. Для голени, проксимальный конец суставная впадина большеберцовой кости, дистальный суставная впадина для соединения со стопой. Аналогично для всех остальных рычагов.