Добавить в цитаты Настройки чтения

Страница 12 из 16



Хороший пример представляет собой радиоактивный распад атомных ядер, при котором идентичные изначальные условия могут привести к разным результатам. Представьте миллион идентичных радиоактивных атомных ядер, которые являются нестабильными и рано или поздно спонтанно «распадутся», при этом испустив частицу и перейдя в более стабильное состояние. В то время как квантовая механика позволяет нам рассчитать так называемый период полураспада (время, за которое распадется половина ядер), определить с ее помощью, когда распадется каждое конкретное ядро, мы не в состоянии. Знание периода полураспада приобретает хоть какую-то значимость, когда мы применяем его к статистически большому числу идентичных ядер. Можно рассчитать вероятность того, что ядро распадется через заданное время, однако более точные расчеты мы провести не в силах – и наша неосведомленность здесь ни при чем.

Решить эту дилемму можно, просто сказав, что квантовой механикой дело не ограничивается, а непредсказуемость радиоактивного распада действительно можно списать на нашу неосведомленность, поскольку нам не хватает более глубокого понимания Природы, с помощью которого мы могли бы точно предсказать, в какой именно момент распадется любое из ядер, точно так же как более полное знание о силах, участвующих в процессе подбрасывания монетки, позволило бы нам предсказать его результат. Если бы это было так, в поисках ответа нам пришлось бы выйти за границы квантовой механики. В шестой главе мы увидим, что таких взглядов придерживался Альберт Эйнштейн, который не мог смириться с тем, что квантовая механика словно бы утверждает, что на фундаментальном уровне наш мир по сути своей непредсказуем. И правда, одним из самых знаменитых высказываний Эйнштейна стало его замечание о том, что «Бог не играет в кости», которым он показал свое неприятие вероятностной концепции мира. Однако Эйнштейн ошибался.

Давайте внимательнее рассмотрим происхождение квантовой непредсказуемости и индетерминизма.

Обводящие удары

Мы понимаем, как окружающие нас объекты двигаются и взаимодействуют друг с другом под влиянием сил, и можем предсказывать их поведение в основном благодаря Исааку Ньютону. Помню, несколько лет назад в физическом журнале была напечатана статья, в которой с математической точки зрения анализировалась изогнутая траектория полета футбольного мяча. Бразильский футболист Роберто Карлос, фотография которого была напечатана на обложке журнала, известен своими выдающимися свободными ударами, совершая которые он умел заставить мяч полететь по более изогнутой траектории в облет защитной стенки, чем это было под силу большинству футболистов. Фокус – хотя вряд ли, конечно, Роберто Карлос подробно изучал все эти уравнения – заключался в том, как именно ударить мяч, чтобы он завертелся и в полете вступил во взаимодействие с воздухом. Точно так же годами совершенствовались мячи для гольфа, чтобы траекторию их полета можно было контролировать при определенном ударе. Само собой, есть и бесчисленное количество других примеров. Суть в том, что во всех случаях движения макроскопических объектов уравнения движения можно решить при наличии необходимых вводных данных. Если нам известны масса и форма тела, точная природа воздействующих на него сил, его точное текущее положение и скорость, то мы путем решения уравнений движения можем рассчитать его точное положение и скорость в любой момент будущего. В этом и заключается вся соль более ранней дискуссии о ньютонианском детерминизме.

Анатомия уравнения

Говоря о «решении» уравнения для классической частицы (а именно, той, что не подвержена квантовому поведению), мы имеем в виду, что применяем алгебру, для того чтобы найти значение точного положения и скорости этой частицы в определенный момент будущего. Но уравнение Шрёдингера отличается. Его решение, скажем, для движения электрона внутри атома представляет собой не просто набор чисел, описывающих, где электрон будет находиться в любой конкретный момент (который мы бы получили, решая ньютоновы уравнения, описывающие движение Луны вокруг Земли).

Решение уравнения Шрёдингера гораздо полнее. Это математическая величина, известная под названием «волновая функция» и обозначаемая греческой буквой Ψ (пси). Если вы ищете корни всей квантовой странности, то вы их только что нашли: все они содержатся в волновой функции.

В элементарной алгебре всегда существует неизвестная величина х. Представьте, что х – это положение частицы: «х обозначает место», где нужно копать. В более продвинутой алгебре значение х может зависеть от значения второй неизвестной, скажем t, которой обычно обозначается время. Таким образом, если, к примеру, t=1, то х может быть равен 4,5, а если t=2, то х=7,3 и так далее. Само собой, я просто назвал эти цифры наугад. Так мы решаем уравнение движения для классической частицы. Вот только, так как частица существует в трехмерном пространстве, нам необходимы три числа, чтобы определить ее положение: х, у и z. Суть в том, что х, у и z – это просто символы, которые заменяют определенные числа, это не настоящие «величины».



Волновая функция в уравнении Шрёдингера немного похожа на них. Она представляет собой неизвестную величину и может быть вычислена для любого момента времени, чтобы описать состояние квантовой частицы. Под «состоянием» здесь я подразумеваю все, что мы вообще можем знать о частице.

В физике мы всегда пользуемся математическими символами, чтобы описать некоторую величину или свойство системы, которую мы изучаем. Мы обозначаем величину напряжения буквой V, давление – буквой Р и так далее. Отличие квантовой механики заключается в том, что не существует прибора, который мог бы измерить квантовую функцию подобно тому, как мы измеряем давление и напряжение. Хотя концепция «давления» несколько абстрактна в том смысле, что это величина, которая описывает коллективное движение молекул газа, ее существование хотя бы можно ощутить физически. В отличие от существования волновой функции.

Уравнения движения Ньютона действительно так точны и надежны, что с их помощью можно на много лет вперед предсказать орбитальное движение планет и их лун. Эти уравнения использовались НАСА для расчета траекторий ракет, летящих на Луну и обратно. Во всех вышеприведенных примерах определение текущего состояния физической системы и воздействующих на нее сил в принципе позволяет нам точно определить все будущие состояния этой системы.

Так почему мы не можем применить то же самое уравнение для описания движения микроскопической частицы вроде электрона? Если электрон в данный момент находится в определенной точке и мы применяем к нему некоторую силу, например включая электрическое поле, то мы должны быть в состоянии сказать наверняка, что через пять секунд он будет находиться в такой-то точке.

Но это не так. Оказывается, уравнения, описывающие движения окружающих нас объектов, от песчинок и футбольных мячей до планет, в квантовом мире бесполезны.

Самое важное уравнение физики

Серьезный вклад в развитие теоретического понимания квантовой механики внес австрийский физик Эрвин Шрёдингер, который взял идеи де Бройля и поставил их на твердое математическое основание. Важно отметить, что существует несколько математических способов описать поведение квантовой системы вроде электрона или атома, и подход Шрёдингера – лишь один из них. Однако именно так квантовую механику обычно преподают студентам-физикам и так я буду ее разбирать на страницах этой книги.

Шрёдингер решил проверить, можно ли с помощью идеи де Бройля о волнах объяснить модель атома Бора. Напомню, Бор предположил, что электроны в атомах двигаются по фиксированным (квантованным) орбитам, но никто не знает, почему так происходит. Шрёдингер предложил новое уравнение, которое описывает не принцип движения частицы, а принцип развертывания волны. В результате у него получилось волновое уравнение.