Страница 2 из 14
• Вождение: беспилотные автомобили, хоть и находятся еще в стадии разработки, уже справляются с управлением лучше, чем средний человек. Согласно исследованиям Virginia Tech (Публичный исследовательский университет в Блэксбурге, штат Виргиния, США), управляемые человеком машины попадают в 4,2 аварии на миллион миль, а автоматизированные машины – в 3,2 аварии на миллион миль2. Несомненно, эта диспропорция в безопасности в ближайшие годы только возрастет, и беспилотные машины, которые никогда не набирают сообщения за рулем и не садятся в машину пьяными, выйдут на передний план.
• Трейдинг: в 2015 году шесть из восьми крупнейших хедж-фондов Соединенных Штатов заработали около восьми миллиардов долларов, основываясь в основном – или исключительно – на алгоритмах искусственного интеллекта3. Машина уже победила в подборе портфеля акций.
• Здравоохранение: в медицине новые машины быстро превосходят возможности врачей-рентгенологов. Исследователи Методистской больницы Хьюстона (Houston Methodist Hospital) используют интеллектуальное программное обеспечение, которое интерпретирует результаты рентгеновского исследования груди в тридцать раз быстрее и с точностью в 99%. Напротив, если маммограмму изучает человек, то в 20% случаев назначается необязательная биопсия4.
• Закон: в юридической сфере наделенные ИИ компьютерные системы проводят анализ доказательств и комплексные экспертизы гораздо лучше, быстрее и дешевле, чем самые талантливые специалисты в области права в престижной юридической фирме. Многочисленные исследования предрекают, что подавляющая часть параюридической работы в скором времени может быть автоматизирована. В не столь отдаленном будущем мы можем достичь точки, где практика полагаться в проведении экспертиз только на человека будет расцениваться как преступная небрежность.
Мы могли бы продолжать и продолжать, приводя и другие примеры, но суть ясна. Новые машины во многих областях уже превзошли человека. Более того, учитывая, что рост мощности и сложности этих платформ идет в геометрической прогрессии, это лишь краткое содержание анонса.
Итак, это быстрое распространение ИИ ведет нас к тому, чтобы задать несколько важных вопросов:
– Отнимут ли роботы у меня работу?
– Будет ли моя компания «юберизирована»?
– Как будет выглядеть моя отрасль через десять лет?
– Будут ли мои дети жить лучше, чем я?
На следующих страницах мы структурированно, на практике ответим на эти вопросы. Мы проанализировали и разложили в графиках сто лет бизнеса и технологий, и исходя из этих данных сегодня убеждены, что вступаем в новую экономическую эру, ту, что изменит природу работы и основы конкуренции в каждой отрасли. В этой новой экономике мы станем свидетелями расширения границ возможного и сдвиг от машин, которые выполняют, к машинам, которые, оказывается, учатся и думают.
Нравится вам или нет, но это происходит
Сегодня происходит то, что Мировой экономический форум в 2016 году объявил Четвертой индустриальной революцией: время экономической перегруппировки, когда старые способы производства уступают место новым и те, кто сумеет приспособить себе на службу новые машины, будут пожинать щедрые плоды расширения границ экономики5. Так же как Первая индустриальная революция отталкивалась от изобретения ткацкого станка, вторая – парового двигателя, а третья – конвейера, четвертая будет происходить на базе машин, которые, кажется, умеют думать, тех, о которых в этой книге мы говорим как об «интеллектуальных системах».
Мы называем бизнес «всезнаек», когда руководители и менеджеры могут и должны быть постоянно осведомлены обо всем, что касается деятельности компании. Там, где раньше мы догадывались, сегодня можем знать. Эти новые машины, которые всегда «включены», всегда «обучаются» и всегда «думают», скоро станут вызовом и противопоставлением знаниям и опыту даже самых искушенных профессионалов каждой отрасли. Нет способа уклониться от гравитационного толчка, производимого новыми машинами и бизнес-моделями, которые они задействуют и на которые опираются.
В связи с этим, управляете ли вы большим предприятием или только приступаете к первой работе, решение о том, что вы будете делать с новыми машинами, этим современным коктейлем из ИИ, алгоритмов, ботов и больших данных, станет единственным и решающим фактором вашего будущего успеха.
Цифры, которые имеют значение
В последние десять лет мы все вместе наслаждались «развлекательным цифровым пространством». Мы видели создание Twitter (2006 г.), появление iPhone от Apple (2007 г.) и IPO Facebook (2012 г.). Эти компании, наряду с другими, такими как Google, Netflix и Amazon, сумели добиться беспрецедентного коммерческого успеха, выразившегося в принятии, ежедневном использовании и создании дополнительных ценностных качеств для потребителя, изменили то, как мы общаемся и организуемся. В истории останется тот факт, что мы начали цифровую революцию с развлечений и пустяков: посты в Facebook, каналы в Twitter и фото в Instagram. Мы используем самые мощные со времен открытия переменного тока инновации, чтобы делиться видео с котиками, переписываться с тетей Элис и ставить хэштеги под политическими заявлениями. Однако все это лишь разогрев, поскольку мы еще даже не начали осознавать потенциал новых машин.
Пишущая о технологиях Кара Свишер (Kara Swisher) выразила это лучше всех: «В Кремниевой долине полно больших умов, преследующих маленькие идеи»6. Что ж, теперь мы входим в эру больших мозгов, сосредоточенных на больших идеях – имеющих значение цифрах, – использующих эти технологии для изменения того, как нас учат, кормят, перемещают, страхуют, лечат и как управляют.
Такие компании, как Facebook, Amazon, Netflix и Google (иногда называемые группой разработчиков FANG), кажется, утвердились в роли заведомых и вечных победителей в этой области, однако в истории они, вероятнее, останутся как предвестники значительно более важного и демократичного экономического сдвига. Следующая волна цифровых титанов, скорее всего, не будет состоять из стартапов Кремниевой долины. Напротив, она будет запущена сложившимися компаниями из более «традиционных» отраслей – в таких городах, как Балтимор, Бирмингем, Берлин или Брисбен, – которые поймут, каким левериджем могут стать новые машины для надежных знаний о соответствующей индустрии.
Мы начинаем замечать, как это происходит, поскольку все вместе работаем над применением интеллектуальных систем для решения самых досадных общественных болезней в областях, где цифровые технологии нужны не только для развлечения или тому подобного, но и для изменения жизни. Конечно, многие институты – столпы нашего общества и повседневной жизни – созрели для обновления.
Например, каждый год мир теряет в автомобильных авариях 1,2 миллиона жизней, причем 94% происшествий становятся результатом человеческих ошибок7. Только в Соединенных Штатах эти ДТП обходятся обществу в более чем один триллион долларов. Это почти треть того, что федеральное правительство США собирает в качестве налогов с физических лиц8. Беспилотные автомобили обещают спасти бесчисленное количество жизней и оградить нас от душевных мук.
Одна треть произведенной в мире еды выбрасывается. Только тех продуктов, что выкидывают в богатых странах, достаточно, чтобы накормить все страны Африки к югу от Сахары9. Организовав эту цепочку и применив искусственный интеллект, мы могли бы буквально накормить весь мир.
Так же могло бы резко уменьшиться число ошибочных медицинских диагнозов. Сегодня от 5 до 10% выездов «скорой помощи» заканчиваются постановкой ложного диагноза10. Более двенадцати миллионов случаев неверного диагностирования каждый год приводят к четыремстам тысячам смертей, вызванных предотвратимыми ошибками, – и это только в США11. Применение соответствующих данных в процессе диагностики могло бы кардинально улучшить результаты лечения.