Страница 13 из 14
Коротко говоря, три эти специфические черты – самообучающееся ПО, мощные возможности аппаратной обработки данных и невероятное количество данных – объединяются, чтобы оживить интеллектуальные системы (кстати говоря, в некоторых кругах о них сейчас говорят как о программных «платформах», но для ясности и последовательности будем использовать термин «интеллектуальные системы»). Далее в главе расскажем, как эти участки сочетаются друг с другом. А прежде чем взяться за это, полезно дать несколько определений самой противоречивой и неверно понимаемой части машины – искусственному интеллекту.
Искусственный интеллект: почему узкое понимание – лучшее понимание
Термин «искусственный интеллект» настолько часто употребляется, что на самом деле вызывает больше путаницы, чем ясности. На рынке существует много определений, и почти все подчеркивают сравнение с человеческими существами. Подобные определения, например данное в словаре Мерриам-Уэбстер («способность машины имитировать поведение разумного человека»), немедленно отправляют многих из нас по ошибочной дорожке, поскольку мы начинаем думать: «Какой человеческий разум может быть и будет сымитирован?» Мы считаем, что это неправильно.
Наше определение проще:
ИИ – это область компьютерной науки, занимающаяся машинами, которые учатся.
Это выражение яснее. Стремящиеся к антропоморфизму определения ИИ неверны по двум причинам.
1. ИИ, дающий бизнес-результаты, скорее сосредоточен на том, что по-настоящему хорошо делают машины, а не пытается повторить то, что уже хорошо делают люди.
2. Люди уже давно зарекомендовали себя как несовершенные «машины» (просто посмотрите шестичасовые новости). Есть некий нарциссизм в том, чтобы считать проектной целью создания новой машины именно человека.
Таким образом, ИИ – это не о построении робота, передразнивающего форму и поведение человека. Вместо этого примененный на практике ИИ представляет собой следующее поколение компьютерных систем, которые, как старые системы, располагаются в кондиционируемых компьютерных комнатах, а доступ осуществляется через сети и системы (как те приложения на вашем смартфоне), которые вы, может быть, и не видите, но регулярно используете.
Но это определение – только начало. Прорываясь через мешанину определений, мы нашли крайне полезным разделить ИИ на три подкласса2:
1. Узкий ИИ;
2. Общий ИИ;
3. Супер ИИ.
Узкий ИИ, также называемый «прикладной ИИ», или «слабый ИИ», – это базовое определение для данной книги. Важно отметить, что весь ИИ сегодня – и как минимум на следующее десятилетие – узкий (также говорят «узкий искусственный интеллект», или УИИ). Подобный ИИ создается для конкретных целей и ориентирован на выполнение бизнес-задач (например, управление автомобилем, проверка рентгеновских исследований, отслеживание финансовых операций на предмет мошенничества) внутри «узкого» контекста продукта, услуги или бизнес-процесса. Именно это применяют сегодня разработчики FANG, обеспечивая нас цифровыми приключениями. Несмотря на то что кажется, будто новые машины могут сделать что угодно, их цель очень хорошо делать одну конкретную вещь. И поэтому системы УИИ будут безнадежны в достижении других целей, помимо тех, для которых их специально разрабатывали (просто попробуйте спросить свой GPS-навигатор, подходит ли этот луковый бублик с мягким сыром к вашей диете). УИИ – это просто инструмент, пусть и очень мощный, дающий базу всему, что мы будем исследовать в дальнейшем.
Общий ИИ, который также называют «сильным ИИ». Именно он питает страхи массовки в компьютерной игре Singularity, о нем идет речь в упоминавшихся выше фильмах «Она» и «Из машины»3. Сильный ИИ – это поиски машины, обладающей таким же общим разумом, как человек. Вы, например, в течение всего нескольких минут можете обсудить политику, пошутить о чем-то, а затем забросить мяч для гольфа на сто пятьдесят ярдов. Сильный ИИ будет обладать общим интеллектом, чтобы суметь выполнить то же самое.
Бен Герцель (Ben Goertzel), председатель Общества общего искусственного интеллекта (Artificial General Intelligence Society), как на хорошее определение общего ИИ, указывает на кофейный тест: «Зайдите в средний американский дом и подумайте, как сделать кофе, для чего вам придется найти кофемашину, понять, для чего нужны кнопки на ней, найти в шкафчике кофе и т. д.»4 Этот набор задач, наверное, совсем не трудно выполнить большинству взрослых людей, однако в настоящее время это безумно тяжело сделать компьютеру. Создание общего искусственного интеллекта значительно труднее, чем создание узкого: по многочисленным оценкам, мы все еще находимся более чем в двух десятках лет до того момента, как ИИ разовьет такие способности, если вообще когда-либо это сделает.
Таким образом, пугать себя общим ИИ легко по двум причинам, одна из которых практическая, а другая – теоретическая. С практической – сегодня мы видим примеры узкого ИИ, который, кажется, чем-то похож на общий. Это может быть ваше домашнее приложение Alexa для Amazon, которое справится с тестом Тьюринга (действуя неотличимым от человеческого образом). У нас может быть ощущение, что мы движемся в сторону ОИИ, однако это всего лишь блестящая, элегантная реализация голосового интерфейса интернет-поиска, известного нам уже почти пятнадцать лет.
С теоретической стороны, компьютерная наука смотрит на человека как на машину по природе – машину, имеющую очень отчетливые ограничения. IQ человека обычно колеблется между 80 и 150 пунктами – очень низкими показателями по компьютерным меркам. Если с точки зрения программного обеспечения общий ИИ станет возможным, зачем нам ограничивать машинный «интеллект», скажем, 150 баллами? Почему не сделать 300, или 3000, или 30 000? Ни один из нас не смог бы даже отдаленно понять, чем бы был или что мог бы совершить подобный коэффициент интеллекта, но если это всего лишь вопрос соединения большего числа серверов в облаке для добавления большей операционной мощности, то куда это нас завело бы?
Все это приводит нас к третьему определению. Супер ИИ – это, по сути, технический гений, выпущенный из бутылки. Не понятно, будет ли человек знать, как остановить машину в случае реализации подобного сценария? Она бы оставила далеко позади весь наш коллективный разум (а ведь, как мы знаем, если посадить в одной комнате десять достаточно умных людей, их коллективный IQ будет равняться на 1200, а где-то 95 баллам, хотя мы можем рассчитывать на различные мнения и точки зрения, которые люди всегда приносят с собой). Как мы сможем тогда отключить машину, если она всегда на 10 (или на 1000) шагов впереди нас?
Все это интересно, особенно как предмет для разговора на коктейльной вечеринке. Однако, возвращаясь к нашим исследованиям, будущее в духе Singularity, с бегающими вокруг наделенными супер ИИ терминаторами, – это мираж. Серьезные люди, те, что заняты созданием этих систем сегодня, довольно умерены в оценках того, возможны ли такие сценарии хотя бы через сто лет, не говоря уже о пяти или десяти годах. Эндрю Ын (Andrew Ng), руководитель исследований в Baidu Research, изложил эту мысль коротко и точно, сказав, что «волноваться насчет [общего и супер] ИИ – это как волноваться о перенаселении Марса еще до того, как мы на него ступили»5.
Исходя из вышесказанного, наш фокус в этой книге специально направлен на узкий ИИ, поскольку здесь, в реальном мире, больше озабочены эффективным использованием инструмента для хороших бизнес-результатов современного предприятия. И пока кто-то продолжит мучить себя, волноваться о таких вещах, как супер ИИ, конкуренты выдавят его из бизнеса, применив на практике узкий ИИ. С этим определением искусственного интеллекта давайте углубимся в тему новой машины.
Знакомьтесь – машина: анатомия интеллектуальных систем
Каждая интеллектуальная система может делать совершенно разные вещи, но у всех схожая анатомия. По сути, если вы знакомы с технологиями для предприятия и с предшествующим поколением учетных систем (такими как ERP или CRM-системы), то многие составляющие покажутся уже известными. В конце концов, технологический «стек» учетных и интеллектуальных систем имеют многие общие элементы, такие как интерфейс, прикладная логика, последовательности операций, базы данных и инфраструктура.