Добавить в цитаты Настройки чтения

Страница 5 из 7



Существует несколько гипотез, пытающихся объяснить явление барионной асимметрии, однако ни одна из них не признана научным сообществом достоверно доказанной.

Наиболее распространены теории, расширяющие Стандартную модель таким образом, что в некоторых реакциях возможно более сильное нарушение CP-инвариантности по сравнению с её нарушением в Стандартной модели. В этих теориях предполагается, что изначально количество барионной и антибарионной материи было одинаково, однако впоследствии в силу каких-либо причин из-за несимметричности реакций относительно того, какие частицы – вещества или антивещества – в них участвуют, произошло постепенное нарастание количества барионного вещества и уменьшение количества антибарионного. Подобные теории возникают естественным образом в моделях великого объединения.

Другие возможные сценарии возникновения асимметрии привлекают либо макроскопическое разделение областей локализации вещества и антивещества (что представляется маловероятным), либо поглощение антивещества чёрными дырами, способными отделить его от вещества при условии нарушения CP-инвариантности. Последний сценарий требует существования гипотетических тяжёлых частиц, распадающихся с сильным нарушением CP-инвариантности.

Викиновости по теме:

Учёные предполагают, что барионная асимметрия связана с тёмной материей

В 2010 году была выдвинута гипотеза, что барионная асимметрия связана с наличием тёмной материи. Согласно сделанному предположению носителем отрицательного барионного заряда являются частицы тёмной материи, не доступные для непосредственного наблюдения в земных экспериментах, но проявляющихся через гравитационное взаимодействие на масштабах галактик.

Эпоха электрослабых взаимодействий

Между 10−32 и 10−12 секунд после Большого Взрыва. Температура Вселенной всё ещё очень высока. Поэтому электромагнитные взаимодействия и слабые взаимодействия пока представляют собой единое электрослабое взаимодействие. За счёт очень высоких энергий образуется ряд экзотических частиц, таких как бозон Хиггса и W-бозон, Z-бозон.

Эпоха кварков

Между 10−12 и 10−6 с после Большого Взрыва. Электромагнитное, гравитационное, сильное, слабое взаимодействия формируются в их современном состоянии. Температуры и энергии все ещё слишком велики, чтобы кварки группировались в адроны. Также называется эпохой кварк-глюонной плазмы.

Эпоха адронов

Между 10−6 и 100 с после Большого Взрыва. Кварк-глюонная плазма охлаждается, и кварки начинают группироваться в адроны, включая, например, протоны и нейтроны. Через время порядка 2 с после Большого Взрыва нейтрино высвобождаются и начинают свободно двигаться в пространстве. Наблюдаемые и сегодня, эти частицы ведут себя аналогично фоновому реликтовому излучению (которое возникло значительно позже их).



Эпоха лептонов

Между 100 с и 3 мин после Большого Взрыва. Размер наблюдаемой Вселенной тогда был меньше сотни астрономических единиц. В ходе адронной эпохи большая часть адронов и антиадронов аннигилируют (взаимоуничножаются) друг с другом и оставляют пары лептонов и антилептонов преобладающей массой во Вселенной. Приблизительно через 3 с после Большого Взрыва температура опускается до значения, при котором лептоны более не образуются. Лептоны и антилептоны, в свою очередь, аннигилируют друг с другом, и во Вселенной остаётся лишь небольшой остаток лептонов.

Эпоха нуклеосинтеза

Приблизительно с 100 секунды после Большого Взрыва материя охладилась достаточно для образования стабильных нуклонов, и начался процесс первичного нуклеосинтеза. Он длился до возраста Вселенной 3 минуты, и за это время образовался первичный состав звёздного вещества: около 25 % гелия-4, 1 % дейтерия, следы более тяжёлых элементов до бора, остальное – водород».

Вот так, господа читатели, мы никак не можем продвинуться дальше трёх минут после Большого взрыва. Это удивительно, ведь большую часть этих трёх минут у материи не было массы, бозоны Хиггса появились относительно недавно, а известны стали вообще в новейшее время, только в 2012 году от Рождества Христова. Значит, время не замедлялось массой, а имело нормальную скорость большую часть этих трёх минут, но они очень долго длились (как миллиарды лет). Остаётся только считать, что вся эта материя двигалась с около световыми скоростями, тогда понятное дело, время замедлялось. Но не могла же материя двигаться со скоростями свыше скорости света? Хотя в любом случае фотоны по теории должны были опередить всю остальную материю и улететь в неизвестном направлении, наверное, за пределы вселенной. Тогда, как же Солнце посылает нам ежесекундно огромное число фотонов? Откуда оно их берёт, если согласно приведённому куску из Википедии, первыми образуются фотоны, нейтрино и кварки. Ведь все фотоны, образовавшиеся тогда, должны были опередить нейтрино и кварки, с какой бы скоростью не двигались последние. Нейтрино не могут содержать в себе фотонов по определению, и мы думаем, что с этим согласятся и ортодоксы. Остаётся предположить, что фотоны осели в кварках. Но так тоже не получается, так как кварки и гипероны быстро распадаются в эпоху раздувания и высвобождают фотоны, и фотоны должны были куда-то улететь. Однако если вспомнить Стандартную модель атома, то и в кварках нет фотонов. Они, оказывается, сидят в Бозонах Хиггса, которые образовались гораздо позже самих фотонов. Так что все фотоны должны были разлететься за время в течение 3 минут от Большого взрыва. Но этого не произошло, Солнце всё ещё светит. Это непреодолимое противоречие этой теории. Всё на ней можно поставить крест и объявить полностью несостоятельной. Но это ещё цветочки. В эпоху лептонов у нас взаимно уничтожились адроны и анти адроны. А потом взаимно уничтожились лептоны и анти лептоны. Остался только небольшой запас лептонов. Получается, что нуклеосинтез начался из лептонов? А из чего же электроны? Вот стандартная модель атома

Однако продолжим цитировать Википедию. Вдруг ортодоксы найдут в себе силы преодолеть все эти затруднение.

«Протонная эпоха. Между 3 мин и 380 000 лет после Большого Взрыва. Нуклеосинтез гелия, дейтерия, следов лития-7 (20 минут). Вещество начинает доминировать над излучением (70 000 лет), что приводит к изменению режима расширения Вселенной. В конце эпохи (380 000 лет) происходит рекомбинация водорода, и Вселенная становится прозрачной для фотонов теплового излучения. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой

Эпоха первичной рекомбинации

Вселенная постепенно охлаждалась и через 379 000 лет после Большого Взрыва стала достаточно холодной (3000 К): замедлившиеся электроны получили возможность соединяться с замедлившимися протонами (ядрами водорода) и альфа-частицами (ядрами гелия), образуя атомы (этот процесс называется рекомбинацией). Таким образом, из состояния плазмы, непрозрачного для большей части электромагнитного излучения, материя перешла в газообразное состояние. Тепловое излучение той эпохи мы можем непосредственно наблюдать в виде реликтового излучения».

Теперь дело пошло побыстрее, какой колоссальный скачок от 3 минут до 379000 лет. Замедлившиеся электроны, соединились с замедлившимися протонами и образовали водород? Непонятно откуда взялись электроны, ведь раньше про них ничего не писали. Непонятно, также, почему электроны не упали на протоны, а стали обращаться вокруг протонов? Ведь ядра протия, это совершенно особые ядра, в них нет внутриядерных и обменных взаимодействий.

Продолжим цитировать Википедию. «Тёмные века