Добавить в цитаты Настройки чтения

Страница 16 из 18

18. Аргон

В Периодической системе только у тринадцати химических элементов символ содержит одну латинскую букву. Это водород, бор, углерод, азот, кислород, фтор, фосфор, сера, калий, ванадий, иттрий, йод и уран.

Несколько десятков лет к этому клубу относился и аргон, однако через шесть десятков лет после обнаружения аргона, в 1957 году Международный союз по теоретической и прикладной химии (ИЮПАК) решил, что однобуквенный символ для инертного газа (пусть и первого инертного газа, открытого человеком) – непозволительная роскошь и заменил символ аргона А на привычный нам сейчас Ar. Правда, эта замена привела к другому казусу – в органической химии символом Ar (от aryl) принято обозначать ароматические фрагменты. Часто бывает, что незнакомый с этим обычаем студент или школьник, открывая продвинутый учебник по органической химии, думает, что органики настолько всемогущи, что получили огромное количество соединений инертного аргона.

О богатых химических свойствах аргона говорить не приходится. В настоящее время известно только одно химическое соединение этого элемента – гидрофторид аргона (HArF). Оно было получено в 2000 году в группе финского химика Маркку Рясянена в университете Хельсинки. Исследователи при температуре −265 °C облучали ультрафиолетом смесь аргона и фтороводорода, находящихся на подложке из иодида цезия. Нагрев меньше, чем на десять градусов – до –256 °C приводит к разрушению гидрофторида аргона на аргон и фтороводород. Оно и понятно – название происходит от древнегреческого слова «аргос» – ленивый, медленный, неактивный, а о лени этого элемента можно судить по тому, что от его открытия до получения его соединения с другими элементами пошло более ста лет.

Аргон – самый распространенный благородный газ, именно поэтому он и был найден первым из элементов своего класса. На долю аргона приходится около 0.94 % атмосферы Земли и около 1.6 % атмосферы Марса. Разрежённая атмосфера Меркурия содержит до 70 % аргона. Если не учитывать пары воды, аргон третий по распространённости газ в земной атмосфере после азота и кислорода. Абсолютное его содержание в атмосфере Земли составляет сорок триллионов тонн. Это количество медленно возрастало по мере геологического старения Земли – практически весь аргон нашей атмосферы является результатом радиоактивного распада нуклида 40К, период полураспада которого составляет 12.7 миллиардов лет. Аргон был обнаружен в 1904 году в результате совместной работы физика Лорда Рэлея (Джона Уильяма Стретта) и химика Уильяма Рамзая, ставших в 1904 году лауреатами Нобелевских премий по физике и химии соответственно.

История открытия началась, когда Рэлей обнаружил, что образец азота, полученный из воздуха, отличается большей плотностью, чем азот, полученный разложением соединений аммиака. Различие было заметным, и учёные решили разделить усилия, пойдя двумя путями. Рамзай собирался найти более тяжёлый газ в азоте, выделенном из воздуха, а Рэлей – посмотреть, не образуется ли при разложении солей аммония более лёгких газов. Рамзай поглотил весь азот из «воздушного» образца, пропуская его над нагретым магниевым порошком – азот с магнием прореагировали с образованием нитрида магния (Mg3N2), однако 1 % газа не реагировал ни с чем, плотность его была больше, чем у азота. В атомном спектре нового газа содержались новые красные и зелёные линии, что подтвердило открытие нового элемента. Сейчас очевидно, что выделенный Рамзаем образец аргона был загрязнён другими инертными газами, содержащимися в нашей атмосфере. Рамзай, кстати, не был первым человеком, выделившим аргон – в 1785 Генри Кавендиш, экспериментируя с газами, обнаружил, что примерно 1 % газов из земной атмосферы не вступает в химические реакции, однако вывода об обнаружении нового газообразного элемента не сделал.

Основное применение аргона – металлургия, а точнее переплавка чугуна в сталь. В ходе этого процесса через расплавленный чугун пропускают смесь аргона с кислородом. Пузыри аргона перемешивают расплавленный металл, а кислород выжигает из чугуна лишний углерод, превращая его в углекислый газ. Аргон применяют там, где следует избежать появления кислорода – сварка активных металлов, производство титана или проведение органических и элементоорганических синтезов в атмосфере инертного газа. Заметим, что в ходе аргоновой или аргоноводуговой сварки металла нагрев и плавление металла ведут не струей аргона, а электродом, дающим электрическую дугу, а ток аргона нужен для защиты расплавленного металла от окисления (например, при сварке алюминия электрической дугой на сварной шов должно подаваться 10–20 литров в минуту). В атмосфере аргона также хранят старые архивные документы и артефакты, которые могут разрушиться от контакта с кислородом. Аргоновые лазеры, дающие синее излучение, применяются в хирургии для сварки кровеносных сосудов, разрушения опухолей и коррекции зрения с помощью микроопераций на глазе.





Аргон, как и другие инертные газы, оказывают наркотическое воздействие на организм. С 2014 года аргон считается допингом. Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от удушья (в результате кислородного голодания).

Одно, пожалуй, из самых спорных применений аргона – закачка им шин автомобилей люксового класса. Полезность этой процедуры, мягко говоря, сомнительна, так как износу шин в первую очередь, способствует качество дорожного полотна, а не то, чем они задуты. Однако, как говорится, понты дороже денег, и, если есть индивидуумы, желающие самоутвердиться перед окружающими тем, что крутые шины его крутой тачки заполнены не абы чем, а инертным газом, организации, которые помогут этим индивидуумам самоутвердится в обмен на денежные знаки, будут процветать: «На дурака не нужен нож, Ему с три короба наврешь, И делай с ним, что хошь».

19. Калий

Когда я долго и серьезно занимался проведением химических олимпиад школьников в Казани и Татарстане, я понял, что калий – роковой элемент. Еще можно было понять, что многие участники путают калий с кальцием – грешен и сам, в моей «Жизни замечательных веществ» в паре мест есть такие опечатки (хотя я, в отличие от школьников не путаю магний с марганцем).

Хуже другое – многолетние наблюдения показали, что некоторые участники региональной олимпиады, решая, например, задачу с вопросом: «Запишите, что произойдёт при прокаливании нитрата аммония», – самозабвенно начинали писать уравнение несуществующей реакции нитрата аммония с калием. Правда, как показывает опыт общения с англоязычными коллегами, у них почти та же беда. Слово «прокаливание» по-английски пишется «calcination», в патентной литературе до сих пор иногда проскакивает «кальцинирование», и школьники с Алабамы или Небраски в качестве ответа на аналогичный вопрос могут начать изобретать реакцию нитрата аммония с кальцием.

На самом деле название калия никакого отношения к прокаливанию не имеет, оно происходит от арабского слова аль-кали – поташ (или растительная зола) – именно из веществ, получавшихся переработкой древесной золы, и был получен этот элемент. Основой названия, которое дал калию его первооткрыватель – Хэфмри Дэви (potassium) и сохранившееся в английском, французском, испанском, португальском и польском языках, также происходит от слова «поташ». Само по себе слово «поташ» в английском языке появилось в результате сочетания слов pot (горшок) и ash (зола). Для получения поташа древесину плотных пород дерева дожигали до золы, золу несколько суток вываривали в воде в специально приспособленных для этого медных горшках. В результате этой обработки соли калия преимущественно переходили в раствор, раствор фильтровали или сливали, отделяя от осадка, после чего упаривали, получая твердую соль – поташ. Основным компонентом поташа был карбонат калия (его до сих пор называют поташом), но также содержал и другие соли калия – сульфат и хлорид (садоводы-огородники знают, что зола, оставшаяся после сжигания веток или листвы – хорошее калийное удобрение). Зачем нужны были все описанные выше мучения? До появления мыла поташ применялся для умывания рук и мойки посуды, его добавляли в смесь для производства стекла вместо соды, получая в результате хрусталь. Из поташа также можно было получить «едкий поташ» – раствор, преимущественно содержавший калиевую щёлочь. Для этого в раствор поташа добавляли известковую воду (гидроксид кальция, Са(ОН)2), протекала обменная реакция, плохо растворимые в воде карбонат и сульфат кальция выпадали в осадок, а из жидкости, оставшейся над осадком, можно было выделить гидроксил калия – едкий поташ. Именно из гидроксида в 1807 году Дэви и смог выделить первый образец металлического калия. Это открытие стало вехой в истории химии – калий стал первым металлом, для получения которого воспользовались электричеством.