Добавить в цитаты Настройки чтения

Страница 13 из 18

Что же представляет сам по себе элемент кремний, без которого в наше время не заработает ни одно электронное устройство? Разложить кварц или песок на кремний и кислород сложно, для этого требуются колоссальные затраты энергии. Упомянутый в двух предыдущих главах Хэмфри Дэви занимался и кремнием – он, вероятно, первый догадался, что кварц или песок представляет собой соединение нескольких элементов, а не отдельный элемент и даже попытался его выделить. Дэви пропускал пары металлического калия над оксидом кремния, получая темное вещество, которое при сжигании снова давало оксид кремния. Образец кремния, полученный Дэви, был сильно загрязнен примесями, грязные образцы получили и его последователи – Жозеф Луи Гей-Люссак и Луи Жак Тенар. В конечном итоге чистый образец кремния в 1825 году получил Йёнс Якоб Берцелиус, который и дал ему международное латинское название «silicium» (от лат. silex – кремень). Русское название «кремний» появилось в 1834 году. Его ввёл химик Герман Иванович Гесс, взяв за основу древнегреческое слово «кремниос», означающее утёс или гора.

Свойства элементарного кремния – типичные свойства металлоида (раньше такое обозначение при менялось для обозначения химических элементов типа «ни рыба, ни мясо» – тех, кого нельзя отнести ни к типичным металлам, ни к типичным неметаллам. Внешне кремний похож на металл – темно-серый цвет, похожий на металлический блеск, но, в отличие от металлов, чистый кремний, во-первых, плохой проводник электричества, а во-вторых, с увеличением температуры проводимость кремния и других полупроводников растет (нагретые металлы, наоборот, хуже проводят электричество) – увеличение температуры полупроводника позволяет его электронам получить больше энергии и стать более эффективными переносчиками заряда. Есть ещё один способ увеличить электропроводность полупроводника – как это не парадоксально, контролируемого ввести в него загрязнения, например, атомы алюминия или фосфора. Если на внешнем электронном слое таких «загрязнителей», которые, конечно правильно называть «легирующими добавками», количество электронов отличается от количества внешних электронов кремния, полученный материал сможет проводить ток либо за счет избыточных электронов (если, например, легирующие добавки – фосфор и другие пятивалентные элементы) или электронных вакансий, «дырок» (в том случае, если к кремнию подмешивают алюминий и другие трехвалентные элементы). Такие полупроводники, как кремний и германий вот уже почти шесть десятков лет являются сердцем электрических схем радио- и телеприемников, компьютеров, смартфонов и другой бытовой и применяющейся в более сложных целях микроэлектроники.

Как кремний относится к жизни? Увы, по-разному. С одной стороны, несколько форм асбеста – кремнийсодержащего минерала образуют волокна, размеры которых могут перфорировать стенки клеток легких, постепенно разрушая их слизистую оболочку (есть даже такое профессиональное заболевание шахтеров, как силикоз легких). С другой, многообразие форм кремния позволило природе заставить работать этот элементов живых системах. Так, в мелких шипах крапивы прячутся острые мини-лезвия из оксида кремния, задача которых проколоть мягкую кожу неосторожного туриста и ввести в прокол незначительное количество раздражающей нервные окончания муравьиной кислоты. Диатомовые водоросли, на которые приходится четверть всего органического вещества планеты, приспособились защищаться панцирями из оксида кремния. Что же касается перспектив существования кремниевых форм жизни, они довольно призрачны (особенно для условий, аналогичных условиям на нашей планете). Почему? Одним из факторов, обеспечивающих успешно протекающий обмен веществ, является способность быстро и обратимо и образовывать, и разрушать связи элемент-кислород. Углерод этому «трюку» обучен хорошо – связь С – О сможет и легко образоваться, и легко разрушиться, а вот связь кремний-кислород, одна из самых прочных химических связей, образуется легко, а вот разрушается со скоростью никак не отвечающий требованиям обмена веществ организма, который должен быстро реагировать на изменения условий окружающей среды.

15. Фосфор

Благодаря работавшим в Казанском императорском университете Бутлерову, Зайцеву и Марковникову про город Казань, в котором я живу и работаю, говорят, что он «Мекка органической химии». Для химиков дня сегодняшнего Казань ещё и мировая столица химии фосфора – в Казани были открыты два важнейших для химии этого элемента процесса – перегруппировка Арбузова и реакция Пудовика. Существует легенда о том, как один из ведущих ученых, изучавших органические соединения фосфора в СССР, академик Мартин Израилевич Кабачник объяснял этот факт.





В советское время в общественных столовых раз в неделю обязательно был день, который граждане СССР называли «рыбным», а в распорядках самих столовых он значился как «не мясной» – в этот день (в зависимости от географии в разных частях 1/6 части суши этим днем была среда или четверг) в меню столовых мясо и птица не значились, и гражданам СССР предлагали уху из минтая, жаренный минтай и котлеты из хлеба, смешанного с фаршем минтая. Может где и была другая рыба, но в столовых Казани другой рыбы, кроме минтая не водилось, более того, «не мясные» дни в казанских столовых случались чаще, много чаще одного раза в неделю.

Благодаря успехам наших учёных на ниве фосфорорганических соединений в Казани время от времени проводились конференции и школы по химии фосфорорганических соединений. На заключительном банкете одной из таких конференций питавшийся всё время конференции в столовой нашего университета Мартин Израилевич сказал, что он разгадал секрет продуктивности казанской химической школы: «В Москве немясные дни в столовой бывают раз в неделю, а в Казани мясные дни бывают раз в неделю. Вы, казанские химики, едите рыбу почти каждый день, и именно поэтому вы такие умные и продуктивные!» Тост был связан с той легендой, что в рыбе много фосфора, и поэтому она очень полезна для ума. Всё же для ума полезно чтение хороших книг и постоянная интеллектуальная деятельность. Иначе самым высоким интеллектом бы обладали люди, регулярно сочетающие сушёную рыбу с «проказами хмеля и солода», но рациональное зерно в сочетании ума и рыбы есть – по одной из версий питание речной рыбой с большим содержанием энергетически ёмкой молекулой АТФ позволила нашим далёким предкам получать больше энергии, которая в итоге и была направлена на эволюцию нашей нервной системы.

Когда же и с чего началась химия фосфора? Впервые фосфор был получен в 1669 году в Гамбурге Хеннигом Брандтом. Руководствуясь алхимическим принципом подобия, алхимик решил выделить золото из мочи (подобие заключалось в сходстве цветов целевого продукта синтеза и исходного вещества), испаряя биологическую жидкость и нагревая сухой остаток до красного каления. Над осадком поднимались светящиеся пары белого фосфора, которые Брандту удалось сконденсировать. В итоге получались крупицы белого воскоподобного вещества, которое ярко горело и к тому же светилось в темноте. Брандт, подумав, что, пусть с золотом ему не повезло, но, вероятно он получил что-то подобное философскому камню. Однако полученное алхимиком вещество было бесполезно в превращении свинца и ртути в золото и, поняв, что оно не философский камень, алхимик назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»), позднее в названии осталось только «носитель света». Столетие после открытия Брандта белый фосфор получали исключительно из мочи, ну а поскольку содержание фосфора в этом сырьем невелико, выход продукта был небольшой, и применения фосфор не находил. В восемнадцатом веке стало понятно, что выделять фосфор из костей выгоднее во всех отношениях, в том числе и эстетическом, и масштабы получения светоносного элемента увеличились. Кости растворяли в серной кислоте, получая фосфорную кислоту, которую затем прокаливали с древесным углём. Тогда же оказалось, что фосфор может существовать в разных формах – кроме белого есть также и красный (белый, красный и черный фосфор представляют собой аллотропные модификации). Сейчас фосфор получают из минералов-апатитов (фосфатов кальция). В честь этих полезных ископаемых назван город Апатиты в Мурманской области.