Страница 8 из 9
В рассмотренных нами примерах катион Ag+ образует две координационные связи с двумя атомами N. С другими лигандами он может образовывать больше связей. Например, с атомом О фенольного гидроксила – ОН он может образовывать три координационных связи. Для того чтобы атом О мог проявить свою повышенную координирующую способность, необходимо отодвинуть от него атом Н, эту роль берут на себя атомы N, которые образуют с Н так называемые водородные связи (изображены на рис. 1.57 тремя точками). Таким образом, роль атомов N, в отличие от предыдущих случаев, подсобная. На рисунке лиганд с водородными связями показан на фоне серого прямоугольника, он содержит на концах молекулы две НО-группы, присоединенные к бензольным ядрам. Катион Ag+ окружает себя тремя такими группами, а группы НО на противоположных концах лигандов координируют другие катионы Ag+. Образуется трехлучевая структура, которая показана упрощенно: шарики – катионы Ag+, цилиндрические палочки – молекулы лиганда. Конструкция имеет форму пирамиды.
Такие трехлучевые фрагменты соединяются, однако получающаяся конструкция иная, нежели в предыдущем случае. Образуются спаянные между собой деформированные шестиугольники, которые объединяются во взаимно пересекающиеся слои, для наглядности эти слои различаются по цвету. Возникает кольчугоподобная конструкция, которую, пожалуй, можно сравнить с кроватной панцирной сеткой (рис. 1.58).
Можно предположить, что химики совсем не планировали получить столь необычную конструкцию, процессом сборки «командовала» природа, зато ученые были удовлетворены результатом.
Кому все это нужно?
Сколько усилий было затрачено при получении этих молекул, сколько разочарований и моментов торжества! Но неужели это только для того, чтобы продемонстрировать возможности химии? Все обстоит немного иначе. Подобные исследования всегда начинаются в результате естественной потребности пытливого ума решить во что бы то ни стало необычную задачу. Оттачивая мастерство в планировании эксперимента и искусство синтеза, ученые получают нужный результат. Тем не менее все рассмотренные структуры интересны не только как результат воображения и фантазии химиков. Новые соединения в большинстве случаев имеют интересные и полезные свойства. Так, оказалось, что катенаны существуют в живой природе. У некоторых биологических объектов – например митохондрий – часть молекул ДНК имеет катенановое строение. Разработанные стратегии и методики синтеза катенанов позволили биохимикам приступить к созданию молекул ДНК с подобной геометрией, чтобы изучать действие различных ферментов (биокатализаторов) на процессы, протекающие в живой клетке.
Все рассмотренные нами катенаноподобные молекулы были, образно говоря, сплетены из «проволоки», представляющей собой одиночные цепочки атомов металлов, углерода и др. В настоящее время обсуждают возможность получения подобных конструкций, где роль «проволоки» или, точнее говоря, «веревки» будут играть жгуты молекул ДНК. Это направление обещает интересные результаты, которые со временем могут быть использованы в биохимии.
Катенаноподобные структуры перспективны и в областях, далеких от биохимии, например в микроэлектронике, причем не в роли некоторых дополнительных усовершенствований, а для решения самых насущных проблем.
Рассмотрим подробнее пример того, как отработанное мастерство в «хитросплетении» молекул может принести реальную пользу. Упоминавшийся ранее Ф. Стоддард (создатель борромеевых колец) сумел решить одну важную задачу. Все дело в том, что современные компьютеры, поражающие нас быстродействием и компактностью, подошли к пределу своих возможностей. На сегодня техника достигла минимального размера ячеек памяти и максимального количества вычисляющих элементов в одном кристалле кремния. Переход от современных устройств к ячейкам памяти, где носителями информации служат отдельные молекулы, позволит увеличить плотность записи информации в десятки раз. Решение было найдено при использовании катенаноподобных структур, точнее ротаксанов. Напомним, что ротаксаны – конструкции, когда на молекулу-гантель насажена кольцевая молекула, причем объемные заглушки на концах гантели не позволяют кольцевой молекуле соскользнуть с оси, – относят к классу катенанов.
В качестве основы была выбрана цепочка полиэфира, в структуру которого были встроены два фрагмента дифенила – С6Н4–С6Н4–, рядом с одним из них находятся две аминогруппы NH, а рядом с другим – два атома О (рис. 1.59, молекула А). Второй компонент представляет собой цикл, собранный из четырех молекул пиридина и двух бензольных колец (рис. 1.59, молекула Б). Самое важное, что циклическая молекула представляет собой четырехзарядный катион (положительный заряд на атомах N).
Далее сквозь кольцевую молекулу Б «продернули» линейный полиэфир А и на концах поместили объемистые заглушки из нескольких фенильных групп, чтобы кольцо не соскользнуло с оси (серые эллипсы на рис. 1.60).
Поскольку кольцо имеет положительный заряд, то оно выбирает на оси то место, где находится наиболее сильный донор электронов, – это фрагмент – NH – С6Н4–С6Н4–NH– (доноры электронов – атомы азота). Ситуация меняется, если систему подкислить, т. е. добавить ионы водорода Н+. Эти ионы водорода присоединяются к аминогруппам NH в молекуле А, превращая их в NH2+. В результате этот фрагмент перестает быть донором. Кольцевая молекула в поисках другого донора перемещается к фрагменту – О – С6Н4–С6Н4–О–, донорная способность которого ниже, чем у – NH – С6Н4–С6Н4–NH–, потому-то цикл вначале его «не замечал» и только после подкисления системы «нашел». Если систему вновь сделать нейтральной, цикл вернется на прежнее место. Перемена знака заряда на аминогруппах во фрагменте – NH – С6Н4–С6Н4–NH– возможна не только при изменении кислотности среды. То же самое происходит при воздействии на систему внешнего электрического потенциала, изменяемого с + на –.
Таким образом, получился молекулярный челнок, который занимает два крайних положения (обозначено сдвоенными стрелками на рис. 1.60), в зависимости от внешнего воздействия. По существу, это молекулярный переключатель, фиксирующий два логических положения – 0 или 1, – лежащих в основе всех электронно-вычислительных схем.
Чтобы всю эту систему сделать более технологичной и доступной для производства, Ф. Стоддарт немного изменил состав линейной молекулы, введя определенные группы, помогающие создать на основе полученного соединения ориентированные пленки. Результаты он опубликовал, как можно было ожидать, в журнале Nature. Уже появились сообщения, что на основе этой идеи удалось изготовить первый опытный образец работающего блока памяти, который может хранить 20 кбайт информации на площади в 100 раз меньшей, чем срез человеческого волоса. Можно полагать, что это этап нового века молекулярной электроники. В 2016 г. Ф. Стоддарт (совместно с упомянутым ранее Ж. Саважем) получил Нобелевскую премию.
Соединения типа печати Соломона, по мнению ее создателей, могут быть использованы при изготовлении материалов для бронежилетов, а также как препараты для очистки воды от примесей и загрязнений.