Добавить в цитаты Настройки чтения

Страница 30 из 33



ATHENE и UNICORN были призваны изучать высокоэнергетические нейтрино, обладающие энергией выше миллиарда или триллиона электрон-вольт. ATHENE концентрировалась на атмосферных нейтрино, а UNI–CORN – на самом интересном рубеже науки: на ускорителях космических частиц в глубоком космосе. Иными словами, это фактически был телескоп. Единственное серьезное различие между этими двумя концепциями было связано с размером. UNICORN был больше и, таким образом, более чувствительным, и именно его концепция могла со временем развиться в инструменты типа DUMAND, AMANDA и IceCube.

Первопроходцы DUMAND тут же осознали масштаб возможной проблемы: согласно их расчетам, чтобы увидеть объекты за пределами нашей галактики, UNICORN должен был включать как минимум кубический километр воды. Однако идея тем не менее была крайне интересной. «Посвященные начали сходиться теснее»230.

Событие, которое теперь принято считать основополагающей встречей в области нейтринной астрономии, произошло в Гонолулу в сентябре 1976 года, когда ученые из США, Японии, Швейцарии, Германии и СССР собрались на летний семинар, организованный Гавайским университетом.

Все три «мифологические» концепции были к тому времени пересмотрены и уточнены. UNDINE, концепция для изучения низких энергий, была реализована в виде конструкции в духе Грейзена: оболочка из тесно прижатых друг к другу оптических детекторов, внутри которых помещается емкость с водой. В качестве стандартного прибора для ультрачувствительного детектирования света использовался фотоумножитель, или «фотоэлемент», способный при правильных условиях выявить даже одиночный фотон. Однако подобные устройства довольно дороги – каждое из них в комплекте с необходимой электроникой стоит до 3000 долларов; соответственно, на создание большого инструмента оболочкового типа потребовалось бы очень много денег. К примеру, одна из нынешних реинкарнаций UNDINE – это Super-K, детектор Супер-Камиоканде, расположенный глубоко в цинковой шахте в Японских Альпах. Super-K содержит «всего» 50 000 тонн очищенной воды, то есть его мощность в 20 тысяч раз меньше той, которая необходима для обнаружения сверхновой в скоплении Девы. Тем не менее, чтобы покрыть стенки даже такой емкости, потребовалось 13 000 фотоэлементов, иными словами, на одни лишь фотоэлементы ушло 40 миллионов долларов. Простой расчет показывает, что если бы вы захотели создать инструмент оболочкового типа, способный разглядеть что-то в кластере в скоплении Девы – иными словами, весящий 100 миллионов тонн, – то вам потребовалось бы около 2 миллионов фотоэлементов общей стоимостью около 6 миллиардов долларов.

ATHENE и UNICORN воплотились в пудинговых конструкциях наподобие марковского инструмента, в котором зона обнаружения заполнена сеткой из фотоэлементов. Поскольку такая конструкция требует меньше детекторов на единицу объема, она стоит меньше, чем вариант Грейзена. Кроме того, ее показатели разрешения выше, поэтому она лучше подходит для телескопа.

Конструкция UNDINE была слишком большой и практически не давала шансов найти сверхновую звезду в течение срока жизни хоть кого-то из участников гавайского семинара, поэтому эту идею отвергли. По словам Артура Робертса, «UNDINE вернулась в свою темную и уединенную обитель, а другие участники обрели любовь и приязнь со стороны ученых»231. Поиск победителя был недолгим, а дальнейшая работа с ним оказалась необычайно плодотворной.

Научное наследие гавайского семинара проявляется в наши дни в многочисленных экспериментах по всему миру, которые уже привели к вручению двух Нобелевских премий. Однако, пожалуй, наиболее значительное наследие – это огромная сеть связей между людьми и странами. Присутствие на семинаре советских ученых имело особое значение. В заключительной резолюции участники семинара заявили о своем коллективном видении DUMAND как средства,

в наибольшей степени подходящего для сотрудничества заинтересованных ученых со всего мира в мирных научных исследованиях.

И все это происходило, несмотря на присутствие в кулуарах семинара множества шпионов с обеих сторон железного занавеса. Из-за того, что ученые отказались принимать их всерьез, их присутствие лишь укрепило ощущение международного товарищества. Джон Лёрнд вспоминает забавную историю с участием советского теоретика и большого эрудита Вениамина Березинского:



Там, как это обычно бывает на собраниях такого рода, присутствовали люди, присматривавшие за происходящим, – и из СССР, и из ВМФ США. Веня руководил работой одной из сессий. Наличие русского председателя было важным. Он говорил на довольно хорошем английском, умел читать по-английски, знал англоязычную литературу и так далее. Очевидно, что его уровень культурного развития был намного выше, чем у сопровождавшего его партаппаратчика.

В какой-то момент перед первым заседанием Веня встает и говорит [имитируя русский акцент]: «Теперь у вас есть русский председатель, и потому заседание начнется вовремя. И помните: Большой Брат следит за вами!» Мы все так и ахнули: «Что-о-о?!» Позже мы отводим его в сторону и спрашиваем: «Веня, откуда ты знаешь эту фразу?», а он: «Ну, я читал Оруэлла, откуда же еще?» Мы спрашиваем: «Что, это книгу можно купить в России!?», а он: «Конечно же, нет!» Так что все это было очень весело. И понятно, что рядом с нами постоянно торчал парень из КГБ, который все фотографировал, и тому подобное.

С американской стороны на встрече присутствовали Питер Котцер с компанией. Примерно в то же время Фред Рейнес, переместившийся из университета Кейса в только что основанный кампус Ирвайн Калифорнийского университета, предложил Джону Лёрнду место приглашенного ученого в своей группе. Нейтринная астрономия начала делать свои первые шаги.

Дружба, зародившаяся на Гавайях, укрепилась в последующие годы благодаря еще нескольким подобным собраниям. Они проводились в Институте океанографии Скриппс в Ла-Холье, штат Калифорния, и в Москве, где русские проявили очень сильный интерес к сотрудничеству и предложили «несколько тысяч фотоэлементов для DUMAND»232. Для закупки такого объема оборудования на Западе пришлось бы потратить около 10 миллионов долларов.

Институт ядерных исследований Академии наук СССР с начала 1960-х вел свою собственную программу выявления природных нейтрино, а во главе его стоял не кто иной, как Моисей Марков, один из руководителей Академии. В СССР уже имелось два детектора нейтрино, работавших в вольфрамовой шахте в Баксанской долине на Северном Кавказе. Первый использовал принципы, предложенные Кованом и Рейнесом, а второй – радиохимический метод Понтекорво и Дэвиса233. В 1977 году Марков возглавил международное совещание по вопросам нейтрино в горной лаборатории. Во время этой конференции Джон Лёрнд и Дейв Шрамм предприняли не разрешенную властями (и безуспешную) попытку покорить Эльбрус – высочайшую вершину Европы (впрочем, позвольте мне не вдаваться в детали этого происшествия).

Однако самая примечательная из этих первых встреч прошла в 1979 году на Дальнем Востоке СССР. Место было выбрано неслучайно и в каком-то смысле являлось антитезой Гавайским островам: на советском Дальнем Востоке можно было найти и воду, и лед.

Впервые об этом задумался Александр Чудаков, советский ученый, осознавший в 1950-е годы весь научный потенциал подводных черенковских детекторов. Вскоре после возвращения с Гавайев он предложил разместить телескоп марковского типа в водах озера Байкал – крупнейшего, глубочайшего и, возможно, древнейшего пресноводного озера в мире.

Байкал лежит в рифтовой зоне у Евразийского тектонического плато, сформировавшейся около 25 миллионов лет назад. Он имеет форму полумесяца. Его длина чуть меньше 650 км, средняя ширина – 80 км. В некоторых местах глубина озера достигает 1600 м. Байкал содержит около 20 % всей жидкой пресной воды на Земле, и в нем сохраняется уникальное разнообразие водной жизни, которое вряд ли можно встретить в каком-либо другом озере в мире. К примеру, в Байкале живет единственный в мире вид пресноводных тюленей. В 1996 году ООН присвоила Байкалу статус охраняемого объекта всемирного наследия – такой же, как у Гранд-Каньона в США и у австралийского Большого Барьерного Рифа.