Добавить в цитаты Настройки чтения

Страница 23 из 33

Причина, по которой Марков и Грейзен сосредоточились на мюонах, а не на электронах, заключалась в том, что они понимали, какую частицу проще выявить. Дело в том, что мюон обладает достаточной массой и, соответственно, импульсом для движения по прямой практически в любой среде; электрон, масса которого в 200 раз меньше, будет отклоняться под воздействием электрических полей расположенных неподалеку ядер и начинает колебаться на расстоянии нескольких метров от места своего рождения. С каждым колебанием электрон создает так называемое тормозное излучение: фотоны, которые, в свою очередь, при наличии достаточной энергии создадут пары электрон-позитрон. Эти вторичные пары также начнут колебаться и создавать еще больше тормозного излучения, будут появляться все новые пары и так далее. В результате (в конкретном случае IceCube) возникнет так называемый каскад193: короткая сигарообразная вспышка света, пропорциональная по своему объему энергии электронного нейтрино, создавшего ее, и указывающая в направлении, в котором двигалось это нейтрино.

Помимо того что длинный и прямой след мюона увидеть намного проще, чем каскад, представляется возможным более точно определить его направление. Соответственно, мы получаем более точное направление движения его родительской частицы – нейтрино. След мюона более полезен для целей астрономии, поскольку он позволяет лучше понять, от какого космического объекта летело нейтрино. Высокоэнергетические мюоны (порожденные высокоэнергетическими нейтрино) имеют и еще одно преимущество – перед своим распадом они могут пролететь несколько километров сквозь лед или камень. Именно это имели в виду Марков и Железных, говоря о «подушке»: «пудинговая» конструкция позволяет выявить мюон, даже если он зародился на большом расстоянии от сетки детектора. Помните, что мы ищем мюоны, направленные вверх, то есть те, что были созданы нейтрино где-то к северу от Южного полюса. IceCube может выявить мюон, рожденный во льду или на материковом грунте снизу или сбоку от устройства, поскольку рано или поздно путь мюона будет заметен внутри сетки приборов. Это увеличивает рабочий объем детектора и в целом делает данный тип инструмента более чувствительным именно к мюонным, а не электронным нейтрино.

Детектор нейтрино должен располагаться глубоко под землей (или под водой или льдом), поскольку эти среды экранируют детектор от падающих на Землю космических лучей. Первичные космические лучи, летящие к нашей планете и состоящие в основном из протонов и других заряженных ядер, сталкиваются с ядрами азота, кислорода и других элементов в верхних слоях атмосферы, создавая потоки направленных вниз пионов и других «вторичных» космических лучей. Те в свою очередь распадаются на другие частицы (например мюоны) или сами сталкиваются с атмосферой и создают так называемые воздушные потоки. Все это служит хорошим примером сходства между космическими ускорителями и их рукотворными аналогами.

Два направленных вверх мюонных нейтрино (νμ), выявленных марковским инструментом или «пудинговой» конструкцией. Нейтрино слева взаимодействует с нуклоном ниже инструмента, создавая мюон (μ), который проходит сквозь детектор вместе с конусом черенковского света. Нейтрино справа вступает во взаимодействие внутри детектора. Следы мюонов определяют направление соответствующих нейтрино.

Принцип, лежащий в основе работы всех ускорителей, предполагает использование мощных электромагнитных полей для ускорения пучков заряженных частиц до высоких энергий, после чего эти пучки сталкиваются с мишенями, или «поглотителями пучка». В случае рукотворного ускорителя это может быть слой углерода, а для космических лучей поглотителем выступает атмосфера Земли. Первичные космические лучи, протоны и ядра, получившие ускорение вследствие какого-то космического катаклизма, вылетают в межзвездное пространство, а затем направляются межзвездными электромагнитными полями по сложной траектории в сторону в том числе и нашей планеты. Они сталкиваются с поглотителем пучка в земной атмосфере и создают вторичные частицы, точно так же как это делает пучок в созданном человеком ускорителе.

Как возникает редкая или новая частица в ускорителе? Все начинается с довольно простого появления заряженной частицы, например протона; затем он ускоряется либо по прямолинейной, либо по круговой траектории за счет воздействия сконцентрированных электромагнитных полей; после этого он попадает в поглотитель пучка, а ученые с помощью специальных детекторов изучают возникающие в результате этого осколки и обломки. В некоторых конструкциях два пучка направлены друг на друга (Ричард Фейнман говорил, что это то же самое, что колотить друг о друга парой швейцарских часов, чтобы понять, что у них внутри).





Стандартная единица энергии в физике частиц – это электрон-вольт (эВ), то есть кинетическая энергия, приобретаемая электроном при разности потенциалов в 1 вольт. По нашим привычным меркам это почти ничто – 100-ваттная лампочка каждую секунду испускает почти 1021 (один миллиард триллионов) электрон-вольт, – однако этот показатель отлично подходит для описания масс элементарных частиц. К примеру, электрон обладает так называемой массой покоя (то есть энергией массы без учета энергии движения), равной примерно 510 эВ. А поскольку Эйнштейн показал, что масса и энергия эквивалентны, то для того, чтобы создать больше массивных частиц в результате удара потока о поглотитель, нам нужен более мощный пучок энергии. Добиться нужного результата можно либо за счет увеличения размеров ускорителя (что позволяет ускорять пучок на более длинном расстоянии), либо за счет использования более сильных электромагнитных полей.

Нынешний рекордсмен – находящийся в ЦЕРН Большой адронный коллайдер (БАК) стоимостью в 10 млрд долл., с помощью которого в 2012-м был открыт бозон Хиггса. Внутри БАК встречные пучки протонов или тяжелых ионов свинца летят навстречу друг другу по кольцевому туннелю длиной 27 километров, а затем сталкиваются в заранее намеченных точках, создавая энергию (в случае протона) на уровне 14 триллионов электрон-вольт.

Поскольку космические ускорители не ограничены бюджетами на проведение международных научных исследований и соображениями, связанными с недвижимостью, а масштабы их деятельности определяются совсем другими параметрами, такими как размеры Земли или даже Солнечной системы, они создают энергию намного больше той, которую когда-либо смогут создать люди. На данный момент рекорд принадлежит так называемой частице Oh-My-God («О боже мой!»)194, впервые выявленной в 1991 году детектором под названием «Глаз мухи» в пустыне штата Юта (кстати, этот инструмент изобрел Кеннет Грейзен). Эта единственная субъядерная частица была способна нанести удар такой же силы, что и бейсбольный мяч, летящий со скоростью 100 км в час, что в 300 000 раз превышает возможности БАК. Она могла представлять собой протон, тяжелый ион или даже нейтрино195; однако точно это узнать невозможно, поскольку частица погибла при столкновении с атмосферой, дав рождение потоку из примерно 200 миллиардов вторичных частиц и продуктов распада196.

Полтора километра льда над IceCube служат щитом от направленных вниз космических лучей; тем не менее некоторым из них все равно удается пробиться достаточно глубоко и достичь массива датчиков. На каждый интересный для ученых мюон, родившийся из устремленного вверх нейтрино, приходится около миллиона атмосферных мюонов, попадающих на детектор сверху. Одна из основных проблем этой технологии – разделение следов мюонов, направленных вверх и вниз. Как вы понимаете, выбирать направленные вверх иголки из направленного вниз стога сена – дело непростое.

Оболочковая конструкция Грейзена обычно представляет собой большую емкость, наполненную чистой и прозрачной жидкостью (как правило, водой) и полностью окруженную стенками из оптических детекторов, расположенных впритык друг к другу. Конструкция размещается на глубине более полутора километров, например в шахте. Предполагается, что детекторы должны выявлять лишь те мюоны, которые зарождаются внутри емкости, и для помощи этому Грейзен предложил, чтобы первичный детектор «был заключен в оболочку из сцинтиллирующего материала, что позволит различать явления, связанные с нейтрино, и явления, вызываемые мюонами». Иными словами, в конструкции имеется две оболочки: внутренняя, состоящая из первичных оптических детекторов, и внешняя, состоящая из сцинтилляторов и использующаяся для исключения или «вето» атмосферных и других мюонов, рожденных за пределами детектора. Поскольку эти частицы будут проходить сквозь инструмент, они активизируют сцинтилляторы при входе и выходе, в то время как мюоны, рожденные внутри емкости, будут создавать сигнал только на выходе.