Добавить в цитаты Настройки чтения

Страница 15 из 20



Четвертый порог. От молекул к спутникам, планетам и солнечным системам

Простые химические молекулы, обращающиеся вокруг молодых звезд, создали условия Златовласки для следующего порога усложнения, послужив строительным материалом для совершенно новых астрономических объектов: планет, спутников и астероидов. По химическому составу планеты более разнообразны, чем звезды, и при этом они гораздо холоднее, поэтому на них образовались идеальные условия Златовласки для сложных химических явлений. И по крайней мере на одной из них (нашей), а может быть, и на многих других эта химия в конце концов породила жизнь.

В течение долгого времени людям была известна лишь одна Солнечная система. Но в 1995 году астрономы обнаружили экзопланеты – планеты, обращающиеся вокруг других звезд нашей галактики. Это удалось сделать, зафиксировав мельчайшие колебания в движении или крошечные изменения яркости звезд, которые можно наблюдать, когда перед звездой проходит планета. С тех пор мы узнали, что планеты есть у большинства из них, так что, возможно, в одной только нашей галактике существуют десятки миллиардов планетарных систем разнообразных типов. К середине 2016 года астрономы нашли более 3000 экзопланет. В течение следующих 10–20 лет исследование других планетарных систем должно дать нам более точные представления о самых распространенных их конфигурациях. Скорее всего, скоро мы сможем изучить атмосферу других планет, а это должно позволить понять, сколько из них пригодны для жизни. Мы уже знаем, что многие имеют примерно те же размеры, что и Земля, и обращаются на таком расстоянии от своей звезды, чтобы на них присутствовала вода в жидкой форме – важнейший для жизни ингредиент.

Открытие экзопланет говорит о том, что четвертый порог, как и третий, был пересечен уже множество раз и впервые это произошло в истории Вселенной довольно рано, возле звезды, которую мы, скорее всего, никогда не найдем. Но теперь нам достаточно много известно о том, как выглядит этот переход.

Образование планетарных систем – это грязный, хаотичный процесс, побочный продукт формирования звезд в химически обогащенных областях космоса. В течение миллиардов лет после Большого взрыва межзвездное пространство было заполнено облаками вещества с большим количеством разных химических элементов. Почти на 98 % они по-прежнему состояли из водорода и гелия, но критическую роль сыграли оставшиеся 2 %. Как и в ранней Вселенной, гравитация с удовольствием лепила из этих облаков комки. Возможно, в нашей части космоса ей помогла сверхновая, которая взорвалась неподалеку и перетряхнула все вокруг, в результате чего около 4,567 млрд лет назад газ и пыль стали собираться в огромное облако. В качестве визитной карточки эта сверхновая оставила характерные радиоактивные материалы, которые встречаются в метеоритах нашей Солнечной системы.

Сжимаясь, пылевое облако распалось на множество звездных туманностей. Из одной из них образовалось наше Солнце. Оно поглотило 99,9 % всего вещества вокруг себя. Но нам сейчас интересно то, что осталось – кольца мусора на орбите вокруг нашей молодой звезды. Звездная туманность сжималась под действием гравитации, и кружащаяся масса газа, пыли и частичек льда вращалась все быстрей и быстрей, пока центробежная сила не раскатала ее, как тесто для пиццы, и не получилась тонкая плоская область, где теперь расположена Солнечная система. Сегодня такие протопланетные диски можно наблюдать вблизи формирующихся звезд, так что нам известно, что они встречаются очень часто.

Вращающийся диск вещества превратился в планеты, спутники и астероиды под действием двух процессов. Первый – это химическая сортировка. Резкими выбросами из молодого Солнца заряженных частиц, которые называют солнечным ветром, с внутренних орбит выбило более легкие элементы, например водород и гелий, и образовались две отдельные зоны. Внешние области молодой Солнечной системы, как и бóльшая часть Вселенной, состояли в основном из этих первозданных элементов, водорода и гелия. Но внутренние, где впоследствии появились каменистые планеты – Меркурий, Венера, Земля и Марс, – потеряли столько их молекул, что химический состав здесь оказался на редкость разнообразным. Кислород, кремний, алюминий и железо образуют более 80 % земной коры, а такие вещества, как кальций, углерод и фосфор, играют второстепенную роль. Водород – элемент среднего значения, а гелий едва ли встретишь на Земле.



Второй процесс, благодаря которому образовалась Солнечная система, – это аккреция. На отдельных орбитах вокруг молодого Солнца крупицы вещества стали медленно скапливаться вместе. Вероятно, во внешних областях, главным образом содержащих газы, это происходило вполне спокойно. Гравитация собрала вещество в огромные газовые планеты, такие как Юпитер и Сатурн, состоящие в основном из водорода и гелия с небольшими вкраплениями пыли и льда. Но во внутренних областях аккреция протекала более ожесточенно и хаотично, потому что здесь было значительно больше твердого вещества. Частицы пыли и льда слипались, образуя каменные и ледяные комочки, которые в вихре иногда разносили друг друга на куски, а иногда склеивались в более крупные комки. Наконец, появились объекты еще большего размера – метеоры и астероиды, – и на всех орбитах они налетали друг на друга или сливались в такие крупные единицы, что их гравитацией смело бóльшую часть оставшегося хлама. В конце концов в результате этих процессов образовались планеты, которые мы видим сегодня на некотором расстоянии друг от друга на отдельных орбитах вокруг Солнца.

Это описание не вполне отражает, насколько аккреция – хаотичный и ожесточенный процесс. Некоторые объекты двигались поперек орбит, выбивая молодые планеты и спутники с места или разбивая их на куски. Возможно, к центру сместилась гигантская протопланета Юпитера, причем ее гравитационное притяжение должно было развалить любую планету, которая могла бы формироваться в области нынешнего пояса астероидов. Не исключено, что странный наклон и вращение Урана получились в результате резкого удара о другое крупное тело. А зубцы на многих астероидах – это шрамы от жестоких столкновений в начале истории Солнечной системы.

Тела продолжали сталкиваться долго, даже когда Солнечная система уже стабилизировалась. Так, Луна, возможно, образовалась в результате того, что примерно через 100 млн лет после рождения Солнечной системы на молодую Землю налетела протопланета размером с Марс (Тейя). Из-за этого огромные облака материи поднялись на орбиту вокруг Земли, где, скорее всего, они кружились, как кольца Сатурна (возможно, это тоже обломки разбитого спутника), пока в результате аккреции из них не получилась Луна.

За 50 млн лет Солнечная система в общих чертах приобрела свою нынешнюю форму и с тех пор оставалась довольно стабильной. Миллиарды планетарных систем в нашей Вселенной, вероятно, сформировались похожим образом, хотя существует огромное множество их конфигураций. Но все планетарные тела по температуре холоднее, а химически богаче и разнообразнее звезд, поэтому они обеспечили условия Златовласки, которые позволили появиться новым формам сложных явлений. В конце концов один из этих объектов – а возможно, и многие другие – породил жизнь.

Планета Земля

Наша Солнечная система находится в галактике, которую мы называем Млечный Путь, на космической окраине одного из ее спиральных рукавов – Рукава Ориона. Млечный Путь относится к группе с неромантичным названием Местная группа галактик, где их около пятидесяти. Местная группа находится во внешней области Скопления Девы, в котором галактик около тысячи. Оно входит в Местное сверхскопление, где сотни таких групп. Чтобы пересечь Местное сверхскопление, нужно двигаться со скоростью света в течение 100 млн лет. В 2014 году выяснилось, что оно – часть гигантской космической империи, в которой, вероятно, 100 000 галактик и которую, двигаясь со скоростью света, можно было бы пересечь за 400 млн лет. Эта империя называется сверхскоплением Ланиакея (в переводе с гавайского – «необъятные небеса»). В настоящее время это самая крупная известная нам структурированная единица во Вселенной. Предполагается, что Ланиакея строится вокруг каркаса из темного вещества, гравитационное притяжение которого удерживает все эти галактики вместе, пока Вселенная расширяется.