Страница 4 из 17
Солнечные фотоэлектрические преобразователи делают нас частью мира современных полупроводников, который рождается в «кремниевых долинах», создающих смартфоны и Интернет-коммуникацию. Этот мир несет нам новые возможности, выходящие за пределы GPS-навигации, связи и контроля, которые он уже обеспечил. Он обеспечивает предсказуемость затрат и удобство проживания в более комфортабельных и «умных» домах, вписанных в более устойчивые городские структуры, соединяющие воедино работу и отдых в пределах городского квартала.
Мир биоэнергетики, который будет рассмотрен чуть ниже, обладает рядом крайне важных аспектов. Здесь не только открываются новые перспективы производства биомассы в сельском хозяйстве, объединенные с технологиями устойчивого обращения с биологическими отходами. Возможно, что он раскроет для нас совершенно новые аспекты борьбы с бедностью в странах «третьего мира», возникающие благодаря преобразованию солнечной энергии, которая раскрывает здесь во всей мощи истинное значение своего имени.
То, о чем мы хотим рассказать в этой книге, позволяет всем читателям, а не только приверженцам и адептам солнечной энергетики, прояснить свои отношения с природой, с нашим Солнцем, со всей Вселенной.
Часть 1
Солнце и мы
Глава 1
Солнечное наследство
В этой главе мы обратиться к тому, что, очевидно, имеет большое отношение к солнечной энергии, к нам как адептам солнечной энергетики, к самому существу природы и ее законов, определяющих бытие нашего Солнца и всей Вселенной.
1.1. Человек во Вселенной
Вселенная – это место. Но мы, люди, не очень ценим свое место в ней. Наша роль в лучшем случае – роль наблюдателя.
Не так уж и давно было принято считать, что человек и Земля являются центром Вселенной. Вспомним Николая Коперника, Иоганна Кеплера и Галилео Галилея, которые первыми показали всю ошибочность «очевидности» того, что Солнце и все звезды вращаются вокруг нас – вращается только сама Земля. Однако лишь недавно, в 1992 году, т. е. почти «вчера», Галилей был реабилитирован Ватиканом «за неустанную тягу к истине».
Наша Земля действительно не является центром Солнечной системы, так же как и Солнце со своими планетами не находится в центре нашей галактики. Если что и можно найти в центре галактики, то лишь черную дыру, способную поглощать звезды. Солнце принадлежит боковой ветви нашей галактики, которая сформировалась 8,8 млрд лет назад. Солнечная система образовалась всего 4,6 млрд лет назад, тогда как возраст Вселенной оценивается величиной 13,8 млрд лет. Так что нет никаких оснований полагать, что наша галактика играла какую-то особую роль во Вселенной.
Наше Солнце – звезда среднего размера. Такие звезды имеют продолжительность жизни около 10 млрд лет и на завершающей стадии развития превращаются в «красные гиганты». «Жизненный путь» различных звезд хорошо изучен – последовательные трансформации звезд в современной астрономии называют звездной эволюцией, но основная мысль проста: чем больше звезда, тем короче ее жизнь. Например, так называемые массивные звезды, масса которых более чем в 100 раз превосходит массу нашего Солнца, живут всего лишь несколько миллионов лет. В пламени взрыва сверхновой они превращаются в супергигантов, а блеск такой «сверхновой» превосходит светимость Солнца в 500 тысяч раз – быстрая вспышка заменяет свет, который другие звезды испускают миллионами лет (некоторые типы сверхновых служат эталонной «свечой» для измерения расстояний). После взрыва, побыв некоторое время «сверхновой», звезда, следуя по главной последовательности, может, приходя к финалу, трансформироваться в «белого карлика», нейтронную звезду или стать черной дырой, имеющей массу в миллиард раз больше нашего Солнца.
Но поразительны не столько огромные массы и энергии, сколько расстояния во Вселенной. Километры и мили здесь бесполезны, а в качестве универсальной меры используется световой год – расстояние, на которое свет способен распространиться за год. Свет – главный носитель информации во Вселенной. Он не ослабевает, распространяясь в пустом пространстве. Эта его неизменность даже по прошествии 10 млрд световых лет представляет собой совершенно замечательный факт, делающий возможной точнейшую «хронологию» событий во Вселенной. Однако в этом же и его недостаток: скорость света огромна, но не бесконечна, поэтому, наблюдая прошлое Вселенной, мы не в состоянии видеть ее «сегодняшний день». Мы видим только тот свет, который покинул наблюдаемые нами объекты миллионы или миллиарды лет назад.
Рис. 1.1. «Жизненный путь» звезд – по мере старения звезда обнаруживается в различных точках изображенной на рисунке диаграммы Герпштрунга – Рассела, чаще всего движение идет по «главной последовательности» – линии точек, идущей из верхнего левого угла диаграммы в нижний правый.
Но, пожалуй, самое замечательное что Вселенная находится в непрерывном движении, подчиняясь законам физики. Не требуется никакого дополнительного творца, кроме проявления самих законов.
Тем не менее, в описании Вселенной остается множество тайн, и самая главная из них – тайна ее возникновения, «Большой Взрыв». Как могло случиться так, что огромная Вселенная однажды начала развиваться из «шарика», не большего, чем шляпка гвоздя?
В 1927–1929 гг. бельгийский священник Жорж Леметр был первым, кто четко заявил, что объекты, распределение и скорости движения которых и должны быть предметом космологии – это не звезды, а гигантские звездные системы, галактики, населяющие расширяющуюся Вселенную. На основе собственного теоретического предсказания расширения Вселенной он сделал первую правильную оценку постоянной в линейной зависимости скорости «убегания» галактик от расстояния, называющуюся теперь законом Хаббла.
Краткая справка по истории открытия «Большого Взрыва» В 1916 году была опубликована релятивистская теория гравитации Эйнштейна, содержащая уравнения связи кривизны пространства с тензором массы-энергии. Вопрос о стационарности решений этого уравнения возник практически сразу, поэтому в 1917 году Эйншейн опубликовал первую космологическую модель стационарной Вселенной с постоянной кривизной пространства – времени, для устойчивости которой ему пришлось ввести в уравнения космологическую постоянную l, отвечающую отталкиванию; в стандартной космологической интерпретации это и есть темная энергия. Введение постоянной в уравнение потребовали соображения устойчивости решений, но в 1922 году устойчивые решения уравнений Эйнтейна нашел математик из Санкт-Петербурга Александр Фридман. В журнале «Zeitschrift für Physik» вышли две его публикации в 1922 и 1924 годах, где рассмотрены космологические модели Вселенных с положительной и отрицательной кривизной. Независимо от Фридмана, описываемую модель разрабатывали Леметр (1927), Робертсон и Уокер (1935), поэтому решение полевых уравнений Эйнштейна, описывающее однородную изотропную Вселенную с постоянной кривизной, называют моделью Фридмана – Леметра – Робертсона – Уокера.
В 1932 году английский астроном Эдуард Милн выступил с утверждением, что Вселенная кинематически расширялась из некоторого крайне малого объема (модель «холодного» Большого Взрыва), но эта идея была жестко раскритикована Максом Борном и рядом других известных физиков. Однако в 1948 году эмигрант из России физик Георгий (Джордж) Гамов, совместно с астрономами Ральфом Альфером и Робертом Германом опубликовали теорию «горячего» Большого взрыва. Идея состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы легкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения с температурой 3К (Гамов) или 5К (Альфен). Это СВЧ-излучение наблюдалось не раз как шум, но датой открытия космического фона считается 1964 год, когда американцы А. Пензиас и Р. Вилсон идентифицировали этот шум неизвестной природы как реликтовое излучение с температурой около 3К, предсказанной Гамовым.