Добавить в цитаты Настройки чтения

Страница 3 из 5

Рисунок Леонардо моста и его воплощение (рис. 1.8).

Рис. 1.8. Мост Леонардо да Винчи

Пример 1.9. Мост в виде полусвернутого листа

Свернутые в трубочку листья растений образуют причудливые желоба, позволяют сделать «конструкцию» листа более прочной без затрат на это дополнительного «строительного» материала. Природа использует и другие формы, например закрученные в спираль или ребристые.

Подражая природным структурным формам, удается спроектировать ажурные сооружения. Взяв за основу форму полусвернутого листа, инженеры спроектировали мост через реку (рис. 1.9), сочетающий в себе поразительную прочность и легкость, экономичность и красоту конструкции.

Рис. 1.9. Мост в виде полусвернутого листа

Пример 1.10. Наутилус

Nautilus pompilius (Кораблик) (класс Cephalopoda, подкласс Nautiloide) – одно из самых древних животных Земли, которые жили еще 100 миллионов лет тому назад.

Эти моллюски обитают на большой глубине – обычно около полукилометра, а иногда и до 700 м. Раковина имеет спиралевидную форму, разделенную перегородками на несколько камер. Тело моллюска помещено в последней камере. Каждая перегородка имеет отверстие. Конструкция раковины обеспечивает ее подъем или опускание. Моллюск заполняет камеры газом или водой. Когда наутилус хочет опуститься на глубину, он наполняет камеры водой, а для того, чтобы подняться, набирает газ, который вытесняет воду. Раковина становится легкой и всплывает.

На этом принципе работает подводная лодка (рис. 1.10).

Рис. 1.10. Наутилус

Пример 1.11. Мечехвост

Мечехвосты (Xiphosura), отряд преимущественно вымерших морских членистоногих животных класса меростомовых. Уплощенное тело (длиной до 90 см) состоит из головогруди с 6 парами конечностей, служащих для передвижения, захвата пищи и ее размельчения, и брюшка с хвостовым шипом и 6 парами листовидных конечностей с многочисленными жаберными листочками (рис. 1.11). На спинной стороне головогруди – пара простых глазков, на боках – пара сложных. Современных мечехвостов 3 рода, включающих 5 тропических видов: один – в Атлантическом океане у берегов Центральной и Северной Америки, остальные – у юго-восточных и восточных берегов Азии и прилегающих островов. Современные мечехвосты – «живые ископаемые», существуют, почти не изменившись, около 350 млн лет.

Две пары глаз мечехвостов (простые и сложные) выполняют разные функции. Сложные глаза, состоящие из 1000 простых глазков (омматидиев14), обладают способностью усиливать контраст изображения. Основано это уникальное свойство на взаимодействии омматидиев, когда при освещении один омматидий усиливает свет за счет ослабления соседнего, делая сильный свет сильнее, а слабый слабее. Разность между ними становится больше и дает возможность лучше рассмотреть предметы с нечеткими краями на фоне с помехами.

По принципу глаза мечехвоста спроектированы электронные модели и схемы систем, например, для получения снимков небесных светил, аэрофотосъемки со спутников и т. д.





Рис. 1.11. Мечехвост

Пример 1.12. Движитель – хвост рыбы

По аналогии с движением хвостового плавника или туловища морского обитателя был разработан так называемый нестационарный движитель, создающий тягу колебаниями несущей поверхности, имеющими конечную амплитуду (рис. 1.12). Некоторые исследователи считают, что принцип нестационарности движителя, по-видимому, и лежит в основе экономичности передвижения рыб и морских животных, так как они совершают туловищем и плавниками сложные изгибо-крутильные колебания, согласованные между собой таким образом, что при равномерном поступательном движении затрачивается очень небольшое количество энергии.

Русский художник и талантливый изобретатель Петр Васильевич Митурич, предложил использовать в качестве движителя гибкий корпус самого судна, совершающий волнообразные движения. Как указано в свидетельстве на изобретение №33 418 от 8 января 1930 г., движитель представлял собой: «приводимые во вращение изогнутые стержни, расположенные внутри эластичного корпуса, в целях сообщения этому корпусу при помощи шатунов, связанных со стержнями, волнообразного движения».

Рис. 1.12. Модель подводного судна с волновым движителем

Пример 1.13. Парадокс Грея и эффекта Ламинфло

В 1936 г. английский зоолог Джеймс Грей установил, что сопротивление дельфина при его движении в воде, рассчитанное обычным для судостроения способом, оказывается в 8 – 10 раз больше того, которое способна преодолевать мускулатура животного. Ведь мышечная сила у всех млекопитающих, в том числе и китообразных, в пересчете на килограмм массы мышц примерно одинакова. Напрашивается вывод, что каким-то весьма эффективным способом дельфин снижает сопротивление своего туловища. Это несоответствие, получившее название «парадокс Грея», заставило начать работы в направлении, которое недвусмысленно подсказал сам профессор: «Природа сконструировала дельфина много совершенней, чем человек подводную лодку или торпеду».

В попытках разгадать «секрет дельфина» высказывались различные предположения. Большинство сходилось в том, что дельфин благодаря своей гладкой и эластичной коже в сочетании с жировым слоем демпфирует возмущения воды и тем самым создает вокруг себя ламинарный пограничный слой, снижая сопротивление. Механизм ламинаризации объясняли следующим образом: кожа животного представляет собой гладкую эластичную диафрагму, чувствительную к колебаниям давления, которые имеют место в пограничном слое, обтекающем дельфина. Под диафрагмой находятся каналы, наполненные жидкостью, которая, свободно перемещаясь в них под воздействием кожи-диафрагмы, действует как демпфер, поглощая часть кинетической энергии турбулентного потока и тем самым ламинаризируя пограничный слой.

Высказывалось мнение, что для значительного уменьшения сопротивления кожа дельфина должна не пассивно, а активно демпфировать возмущения в пограничном слое, для чего существует какой-то физиологический процесс, способный управлять изменениями свойств кожи. Известный французский исследователь океана, профессор О. Пикар высказал предположение, что нервные окончания в кожном покрове морских животных улавливают изменение давления, предшествующее переходу ламинарного режима обтекания в турбулентный, и через центральную нервную систему передают соответствующие сигналы на демпфирование кожи.

Кожа дельфина в передней части его туловища (особенно хорошо обтекаемой) почти не имеет кровеносных сосудов, в то время как к хвостовой части (где обычно возникает турбулентность и растет сопротивление) количество кровеносных сосудов постепенно возрастает. В связи с этим существует версия, что усиленная циркуляция крови пульсирующего характера в хвостовой части животного как бы демпфирует поверхность, уменьшая турбулентность потока.

Некоторые специалисты считают, что большая часть туловища дельфина участвует в создании движущей силы, т. е. туловище животного одновременно выполняет функции корпуса и движителя. В момент резких ускорений на коже возникают волнообразные складки, распространяющиеся от головы к хвосту, которые называют бегущей волной. При этом как бы сбрасываются возникающие турбулентные вихри, и снижается сопротивление. Но для образования бегущей волны необходимы мускульные усилия. Следовательно, управляющая кожей дельфина мускулатура должна непрерывно работать и постоянно находиться в напряжении, что изнурительно для животного. Исследователи осуществили оригинальный эксперимент, в котором участвовали профессиональные пловчихи и дельфины средней величины. Контуры тела женщины плавные, что вызвано особенностями костно-мышечного аппарата и сравнительно большим слоем подкожного жира. Под слоем жировой клетчатки и у дельфинов, и у женщин залегают локомоторные мышцы. Спортсменок буксировали под водой с разной скоростью. Испытания фиксировались на кинопленку. Обнаружилось, что при скорости свыше 4 уз на торсе и бедрах пловчих появлялись волнообразные складки. При снижении скорости складки исчезали. Известно, что у человека нет никаких специальных мышц для движения кожи и сама кожа для этого не приспособлена. Следовательно, волнообразные складки на теле спортсменок образовались под влиянием гидродинамического воздействия. Из эксперимента следовало, что мускулатура дельфина не принимает участия в образовании бегущей волны.

14

Омматидий (от греч. ōmma, род. падеж ōmmatos – глаз), структурная и функциональная единица фасеточного глаза насекомых, ракообразных и некоторых многоножек. Состоит из линзы с неизменным фокусным расстоянием, образующей фасетку глаза, т. н. кристаллического конуса и воспринимающей группы светочувствительных клеток с нервными отростками, дающими начало нервному волокну. Количество омматидий в таком глазу различно: от ста (у рабочего муравья) до 28 тыс. (у стрекозы). Фасеточный глаз специализирован для восприятия движения (острота зрения и способность к восприятию формы предмета у него развиты слабо) и обеспечивает очень широкое поле зрения (у саранчи каждый омматидий имеет угол зрения в 20°). Таким образом, любое движение врага или добычи мгновенно улавливается хотя бы одним из омматидий.