Добавить в цитаты Настройки чтения

Страница 6 из 10

В большинстве случаев удача не улыбалась испытателям, такие полеты часто оканчивались трагически. В конце XIX века немецкий инженер Отто Лилиенталь научился держаться в воздухе непродолжительное время на парусном летательном аппарате. Но до машущего полета было еще далеко, а сам Лилиенталь погиб во время одной из очередных попыток взлететь…

Вскоре начались испытания первых самолетов – транспортных средств, оснащенных неподвижными крыльями и мотором, способных держаться в воздухе без мускульной силы человека. Вроде бы махолеты были теперь ни к чему.

Но вот парадокс: если рассчитать, сколько груза на единицу затрачиваемой энергии можно поднять при машущем полете и с помощью современного самолета, выиграет махолет. Это человеку не суждено вознести самого себя в воздух с помощью крыльев. А машине? Овладение машущим полетом принесло бы ощутимую пользу воздушным перевозкам. Поэтому попытки технически воплотить выверенное природой изобретение не прекращались и после создания самолетов.

Не прекращаются они и сегодня…

Что помогает насекомым порхать?

«Самым лучшим подарком были прозрачные крылышки, совсем как у стрекозы. Их привязали Дюймовочке на спину, и она тоже могла теперь летать с цветка на цветок». Помните эту сказку Андерсена?

Николай Егорович Жуковский (1847–1921) – российский ученый, основоположник современной гидро- и аэромеханики. Стремился за внешним несходством животных и машин увидеть общие принципы их движения. Блестяще решил сложные проблемы полета в работе «О парении птиц». Дал образец теоретического подхода к изучению биологических систем.

Большое внимание ученых, в том числе биомехаников, издавна привлекали полеты насекомых. Эти существа могут летать в любом направлении, делать резкие повороты и зависать на месте, совершать маневры, недоступные самым современным реактивным самолетам. А вертолет? – скажете вы. Но разве возможно на вертолете порхать, делать столь же точные подлеты, как бабочки – к цветкам, и садиться на абсолютно неблагоустроенных площадках?

Выдвигающиеся крылья кузнечиков и жуков, грузоподъемность пчел и шмелей, виражи стрекоз – все поражало, но оставалось непонятным. Самым обидным было то, что с помощью обычной аэродинамики – науки, применяемой при расчетах движения самолетов и вертолетов, – понять, как насекомым удается летать, оказалось невозможно. Например, даже тщательный анализ не мог объяснить их высокую подъемную силу. А не разобравшись в этом, нельзя ничего позаимствовать.

Однако в последнее время в изучении движения этих крылатых существ наметились сдвиги. Исследователи с помощью аэродинамической трубы наблюдали за полетом крупной моли. Размах ее крылышек достигает 10 сантиметров, а частота взмахов – 26 раз в секунду. В опытах с помощью струек дыма удалось обнаружить крошечные воздушные вихри, которые вились по крыльям моли, как маленькие смерчи.

Оставалось неясным, почему возникают такие спиральные потоки. Чтобы изучить процесс в деталях, нужно было найти еще более крупное насекомое. Но где взять подобных «великанов»? Пришлось создать механическую «моль»!

Ученые воспользовались тем известным из аэродинамики фактом, что быстрый поток воздуха над маленьким объектом можно имитировать медленным потоком – над большим объектом. И вот появилась рукотворная «моль», превосходящая размерами обычную в 10 раз и намного реже хлопающая крыльями (ее изображение – на рисунке слева). Модель обошлась ни много ни мало в 60 тысяч (!) долларов. Почему так дорого? Следовало учесть, что крылья насекомых, а также птиц и летучих мышей представляют собой не жесткие, как у самолетов, а гибкие конструкции (это прекрасно видно на правой части рисунка). Во время движения они способны изменять форму, изгибаться – и в этом, как предполагали исследователи, могла крыться тайна возникновения подъемной силы. Представьте, сколько «умной» электроники пришлось «запихнуть» в модель ради такой имитации!





И вот как только крылья механической моли начинали опускаться, у их передней кромки возникали те самые крохотные вихри. Они, не отрываясь, постепенно смещались вдоль поверхности крыльев. Этими воздушными водоворотами и объяснялась высокая подъемная сила крыльев насекомого.

Но это лишь начало подробного исследования полета насекомых. Необходимо продолжить эксперименты, в том числе и компьютерное моделирование. К этим работам внимательно приглядываются военные: они с удовольствием использовали бы в качестве драконов крохотных роботов-насекомых для наблюдения за противником с воздуха.

Известно, сколько в свое время бились инженеры над проблемой загадочных вибраций крыльев самолетов, часто приводивших к авариям. А когда проблема была решена, обнаружилось, что уже миллионы лет подобные вибрации устраняются у стрекоз с помощью специального утолщения в крыле. Так, уже не в первый раз, прозевали подсказку природы. Очень не хотелось бы снова попасть впросак…

Кто на свете всех сильнее?

Насекомые преподносят сюрпризы, связанные отнюдь не только с их умением летать. Поражает, например, их необычайная выносливость. Так, жук-носорог, подобный маленькой живой бронемашине, затрачивает неимоверные усилия на то, чтобы проложить дорогу в ссохшейся почве. Масса энергии уходит у самцов жуков, ведущих между собой тяжелый бой. Сообщалось даже, что жуки способны нести груз, превосходящий собственный вес в 350 раз! Но это были, так сказать, оценки «на глазок». И лишь недавно ученые решили точно измерить усилия жуков.

К насекомому прикрепляли свинцовый грузик весом, превышавшим вес жука в несколько раз. При этом жук продолжал двигаться как ни в чем не бывало. Нагрузку увеличивали. Когда ее вес превосходил вес жука в тридцать раз, он, не спотыкаясь, шел более получаса со своей обычной скоростью – примерно один сантиметр в секунду. Даже при нагрузке, в сто раз превышающей вес жука, он умудрялся с ней справляться. Жук-носорог подтвердил репутацию самого сильного существа на Земле (разумеется, по отношению к собственному весу).

Удивительнее всего оказалось то, что при увеличении нагрузки расход жуком энергии сокращался. Получалось, что на перемещение собственного веса жук тратит больше энергии, чем на переносимый им груз. Такие результаты поставили экспериментаторов в тупик.

На помощь призвали специалистов по биомеханике. Они припомнили, что с подобным явлением приходилось сталкиваться при наблюдениях за женщинами некоторых африканских племен. Те могут нести на голове груз, вес которого составляет около пятой части веса их тела, не совершая при этом дополнительных усилий. Как же это возможно?

Обратили внимание, что из сосудов с водой, которые несут на головах женщины, по дороге не расплескивается ни капли. Это говорит о том, что никаких вертикальных движений они не совершают. Другими словами, в пути женщинам удается поддерживать центр тяжести тела на постоянной высоте. Для этого они вырабатывают особенную плавную походку. Мы же – обычные, нетренированные люди, – когда идем широким шагом или вразвалку, тратим заметную долю своих усилий на никому не нужное смещение вверх-вниз центра тяжести своего тела. Это и приводит к неоправданным затратам энергии, а значит – к усталости.

К сожалению, полностью ответить на вопросы, связанные с движением жука-носорога, до сих пор не удалось. Ученые собираются исследовать усилия, развиваемые каждым из мускулов жука. Уж очень заманчиво выяснить, как можно двигаться без дополнительной затраты сил…