Страница 8 из 12
Рис. 2.4 и 2.5
Если пренебречь влиянием тяготения, – как это сделали Эйнштейн и Пуанкаре в 1905 году, – то мы получим то, что называют специальной теорией относительности. Для каждого события в пространстве-времени можно построить световой конус (множество всех лучей света в пространстве-времени, которые могут излучаться при рассматриваемом событии), и, поскольку скорость света одинакова для всех событий и во всех направлениях, все световые конусы одинаковы и направлены в одну и ту же сторону. Теория также говорит, что ничто не может перемещаться быстрее света. Это значит, что траектория любого объекта в пространстве и времени имеет вид линии, расположенной внутри светового конуса (рис. 2.7). Специальная теория относительности успешно объяснила, почему для всех наблюдателей скорость света одинакова (как показал опыт Майкельсона и Морли), и описала, что происходит, когда объект движется со скоростью, близкой к скорости света. Но она противоречила ньютоновской теории тяготения, которая гласит, что тела притягиваются друг к другу с силой, зависящей от расстояния между ними. Это означает, что если сдвинуть одно из тел, то в то же мгновение изменится сила, действующая на второе тело. Или, другими словами, гравитационное воздействие должно распространяться с бесконечно большой скоростью, а не со скоростью меньше скорости света или равной ей, как того требует специальная теория относительности. Между 1908 и 1914 годом Эйнштейн предпринял ряд неудачных попыток построить теорию тяготения, совместимую со специальной теорией относительности. Наконец, в 1915 году он предложил теорию, которая теперь известна как общая теория относительности.
Рис. 2.6
Эйнштейн сделал революционное предположение: тяготение существенно отличается от других сил и есть следствие того, что, вопреки привычным представлениям, пространство-время не является плоским – оно искривлено, или деформировано, распределенными в нем массой и энергией. Тела, например Земля, движутся по криволинейным орбитам, не потому что их принуждает к этому сила тяготения, а потому что такие орбиты представляют собой кратчайший путь в искривленном пространстве. Это так называемая геодезическая линия – ближайший аналог прямого пути в плоском пространстве. Геодезическая линия – это кратчайший (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли представляет собой двумерное искривленное пространство. Геодезическая на поверхности Земли – это дуга большого круга и это кратчайший путь от одной точки до другой (рис. 2.8). Поскольку геодезическая – кратчайший путь между двумя аэропортами, то именно такой маршрут предлагает пилоту навигатор. В общей теории относительности тела всегда движутся вдоль прямых линий в четырехмерном пространстве-времени, но для нас в нашем трехмерном пространстве все выглядит как движение по искривленным траекториям. (Это как смотреть на самолет, пролетающий над холмистой местностью. Хотя самолет летит по прямой линии в трехмерном пространстве, его тень на двумерной поверхности перемещается по искривленной траектории.)
Рис. 2.7
Рис. 2.8
Под действием массы Солнца пространство-время искривляется так, что, хотя в четырехмерном пространстве-времени Земля движется по прямой, для нас, находящихся в трехмерном пространстве, она выглядит движущейся по почти круговой орбите.
На самом деле планетные орбиты, предсказываемые общей теорией относительности, почти не отличаются от орбит, вычисляемых в рамках ньютоновской теории тяготения. Но в случае Меркурия, который, будучи ближайшей к Солнцу планетой, больше всего ощущает сильные гравитационные эффекты и к тому же движется по довольно вытянутой эллиптической орбите, общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца со скоростью около одного градуса в десять тысяч лет. Несмотря на незначительность этого эффекта, он был обнаружен задолго до 1915 года и стал одним из первых подтверждений теории Эйнштейна. В последнее время радиолокационными методами удалось измерить еще меньшие отклонения орбит других планет от орбит, рассчитанных с помощью ньютоновской теории, и эти отклонения оказались такими, как предсказывает общая теория относительности.
Лучи света тоже должны распространяться вдоль геодезических в пространстве-времени. Отметим еще раз, что из-за кривизны пространства свет не распространяется по прямым линиям и, следовательно, согласно общей теории относительности, гравитационные поля должны изгибать лучи света. Например, теория предсказывает, что под действием массы Солнца световые конусы вблизи него должны слегка искривляться в направлении светила. Это значит, что проходящий вблизи Солнца свет от далекой звезды немного отклоняется, из-за чего земной наблюдатель видит звезду в другом месте на небе (рис. 2.9). Конечно, если бы свет от звезды всегда проходил вблизи Солнца, то мы не могли бы сказать, отклоняется ли он или звезда находится именно там, где мы ее видим. Но Земля движется вокруг Солнца, и поэтому в разное время вблизи него оказываются разные звезды, свет которых отклоняется полем тяготения светила, из-за чего меняется их видимое положение на фоне других звезд.
Рис. 2.9
Эффект этот обычно очень трудно обнаружить из-за яркого света Солнца, не позволяющего наблюдать близкие к нему звезды. Но такая возможность появляется во время солнечных затмений, когда Солнце оказывается закрыто Луной. Предсказанное Эйнштейном отклонение света не удалось проверить сразу, в 1915 году, из-за начавшейся годом ранее Первой мировой войны. Только в 1919 году британская экспедиция, наблюдавшая затмение с побережья Западной Африки, смогла убедиться, что Солнце действительно отклоняет свет, как это предсказывает теория Эйнштейна. В этом доказательстве немецкой теории британскими учеными видели великий акт примирения между двумя странами после войны. Ирония состоит в том, что выполненный позднее анализ сделанных в ходе экспедиции фотографий показал, что ошибки в измерениях были такими же весомыми, как и сам измеряемый эффект. Так что данные наблюдений – следствие счастливой случайности. Сыграло роль еще и то, что ученым было заведомо известно, какой результат они хотели получить, что не редкость в научных исследованиях. Правда, отклонение света было достоверно подтверждено рядом последующих наблюдений.
Согласно другому предсказанию общей теории относительности вблизи массивных тел, таких, например, как Земля, течение времени должно замедляться. Это является следствием соотношения между энергией света и его частотой (то есть числом световых волн в секунду): чем больше энергия, тем выше частота. Когда свет распространяется вверх в поле притяжения Земли, он теряет энергию и, следовательно, частота его волн снижается. (Это значит, что промежуток времени между двумя последовательными гребнями волны увеличивается.) Наблюдателю, смотрящему с большой высоты, все, что происходит внизу, должно казаться замедленным. Это предсказание проверили в 1962 году при помощи пары очень точных часов, установленных в верхней и нижней части водонапорной башни. Нижние часы, расположенные ближе к Земле, шли медленнее, в точности как предсказывала общая теория относительности. С появлением очень точных навигационных систем, работающих на основе сигналов со спутников, разница в показаниях часов на разной высоте над Землей приобрела практическое значение. Пренебрегая предсказаниями общей теории относительности, можно ошибиться в определении положения на несколько километров!