Добавить в цитаты Настройки чтения

Страница 40 из 64

Для передачи сигнала по оптоволоконному кабелю могут использоваться два типа источника света: светоизлучающие диоды (LED, Light Emitting Diode) и полупроводниковые лазеры. Они обладают различными свойствами, как показано в табл. 2.2. Их длина волны может быть настроена при помощи интерферометров Фабри—Перо (Fabry—Perot) или Маха—Цандера (Mach—Zehnder), устанавливаемых между источником и кабелем. Интерферометры Фабри—Перо представляют собой простые резонансные углубления, состоящие из двух параллельных зеркал. Свет падает перпендикулярно зеркалам, углубление отбирает те длины волн, которые укладываются в его размер целое число раз. Интерферометры Маха—Цандера разделяют свет на два луча, которые проходят различное расстояние и снова соединяются на выходе. Синфазными на выходе интерферометра окажутся лучи строго определенной длины.

Таблица 2.2. Сравнительные характеристики светодиодов и полупроводниковых лазеров

Характеристика

Светодиод

Полупроводниковые лазеры

Скорость передачи данных

Низкая

Высокая

Тип волокна

Многомодовые

Многомодовые или одномодовые

Расстояние

Короткое

Дальнее

Срок службы

Долгий

Короткий

Чувствительность к температуре

Невысокая





Значительная

Цена

Низкая

Высокая

Приемный конец оптического кабеля представляет собой фотодиод, генерирующий электрический импульс, когда на него падает свет. Обычное время срабатывания фотодиода, который преобразует оптический сигнал в электрический, ограничивает скорость передачи данных 100 Гбит/с. Термальный шум также имеет место, поэтому импульс света должен быть довольно мощным, чтобы его можно было обнаружить на фоне шума. При достаточной мощности импульса можно добиться пренебрежимо малой частоты ошибок.

Сравнение характеристик оптического волокна и медного провода

Сравнение характеристик оптического волокна и медного провода весьма поучительно. Оптическое волокно обладает рядом преимуществ. Во-первых, оно обеспечивает значительно более высокие скорости передачи, чем медный провод. Уже благодаря этому именно оптическое волокно должно применяться в высококачественных профессиональных сетях. Благодаря низкому коэффициенту ослабления повторители для оптоволоконной связи требуются лишь через каждые 50 км, по сравнению с 5 км для медных проводов, что существенно снижает затраты для линий дальней связи. Преимуществом оптического волокна также является его толерантность по отношению к внешним электромагнитным возмущениям. Оно не подвержено коррозии, поскольку стекло является химически нейтральным. Это важно для применения на химических предприятиях.

Это может показаться странным, но телефонные компании любят оптическое волокно еще по одной причине: оно тонкое и легкое. Многие каналы для кабелей заполнены до отказа, так что новый кабель некуда положить. Если вынуть из такого канала все медные кабели и заменить их оптическими, то останется еще много свободного места, а медь можно очень выгодно продать скупщикам цветного металла. Кроме того, оптический кабель значительно легче медного. Тысяча медных витых пар длиной в 1 км весят около 8000 кг. Пара оптоволоконных кабелей весит всего 100 кг при гораздо большей пропускной способности, что снижает затраты на дорогие механические системы. При прокладке новых маршрутов оптоволоконные кабели выигрывают у медных благодаря гораздо более низким затратам на их прокладку. Наконец, оптоволоконные кабели не теряют свет и к ним сложно подключиться, что способствует их надежности и сохранности.

Отрицательной стороной оптоволоконной технологии является то, что для работы с ней требуются определенные навыки, которые имеются далеко не у всех инженеров. Кабель довольно хрупкий и ломается в местах сильных изгибов. Кроме того, поскольку оптическая передача данных является строго однонаправленной, для двухсторонней связи требуется либо два кабеля, либо две частотные полосы в одном кабеле. Наконец, оптический интерфейс стоит дороже электрического. Тем не менее, очевидно, что будущее цифровой связи на расстояниях более нескольких метров — за волоконной оптикой. Подробнее обо всех аспектах оптоволоконных сетей см. в книге (Hecht, 2005).

2.3. Беспроводная связь

В наше время появляется все большее количество информационных «наркоманов» — людей с потребностью постоянно находиться в подключенном режиме (on-line). Таким пользователям никакие кабельные соединения, будь то витая пара, коаксиальный кабель или оптическое волокно, не подходят. Им требуется получать данные непосредственно на переносные компьютеры, лэптопы, ноутбуки, электронные записные книжки, карманные компьютеры, палмтопы и компьютеры, встроенные в наручные часы. Короче говоря, они предпочитают пользоваться устройствами, не привязанными

к наземным инфраструктурам. Для таких пользователей беспроводная связь является необходимостью.

В следующих разделах мы познакомимся с основами беспроводной связи. У нее есть ряд других важных применений, кроме предоставления доступа в Интернет желающим побродить по нему, лежа на пляже. При некоторых обстоятельствах беспроводная связь может иметь свои преимущества и для стационарных устройств. Например, если прокладка оптоволоконного кабеля осложнена природными условиями (горы, джунгли, болота и т. д.), то беспроводная связь может оказаться предпочтительнее. Следует отметить, что современная беспроводная связь зародилась на Гавайских островах, где людей от компьютерных центров отделяли большие пространства Тихого океана, а качество обычной телефонной системы было далеко не на самом высоком уровне.

2.3.1. Электромагнитный спектр

Если в электрическую цепь включить антенну подходящего размера, то электромагнитные волны можно с успехом принимать приемником на некотором расстоянии. На этом принципе основаны все беспроводные системы связи.

В вакууме все электромагнитные волны распространяются с одной и той же скоростью, независимо от их частоты. Эта скорость называется скоростью света, с. Ее величина приблизительно равна 3 х 108 м/с, или около одного фута (30 см) за наносекунду. (Можно было бы переопределить, воспользовавшись таким совпадением, фут, постановив, что он равен расстоянию, которое проходит электромагнитная волна в вакууме за 1нс. Это было бы логичнее, чем измерять длины размером сапога какого-то давно умершего короля.) В меди или стекле скорость света составляет примерно 2/3 от этой величины, кроме того, слегка зависит от частоты. Скорость света современная наука считает верхним пределом скоростей. Быстрее не может двигаться никакой объект или сигнал. 

На рис. 2.8 изображен электромагнитный спектр. Радио, микроволновый, инфракрасный диапазоны, а также видимый свет могут быть использованы для передачи информации с помощью амплитудной, частотной или фазовой модуляции волн. Ультрафиолетовое, рентгеновское и гамма-излучения были бы даже лучше благодаря их высоким частотам, однако их сложно генерировать и модулировать, они плохо проходят сквозь здания и, кроме того, они опасны для всего живого. Диапазоны, перечисленные в нижней части рис. 2.8, представляют собой официальные названия ITU (International Telecommunication Union, международное телекоммуникационное сообщество), основанные на длинах волн. Так, например, низкочастотный диапазон (LF, Low Frequency) охватывает длины волн от 1 до 10 км (что приблизительно соответствует диапазону частот от 30 до 300 кГц). Сокращения LF, MF и HF обозначают Low Frequency (низкая частота), Medium Frequency (средняя частота) и High Frequency (высокая частота) соответственно. Очевидно, при назначении диапазонам названий никто не предполагал, что будут использоваться частоты выше 10 МГц, поэтому более высокие диапазоны получили названия VHF (very high frequency — очень высокая частота), UHF (ultrahigh frequency — ультравысокая частота, УВЧ), SHF (superhigh frequency — сверхвысокая частота, СВЧ), EHF (Extremely High Frequency — чрезвычайно высокая частота) и THF (Tremendously High Frequency — ужасно высокая частота). Выше последнего диапазона имена пока не придуманы, но если следовать традиции, появятся диапазоны Невероятно (Incredibly), Поразительно (Astonishingly) и Чудовищно (Prodigiously) высоких частот (ITF, ATF и PTF).