Добавить в цитаты Настройки чтения

Страница 19 из 64

1.4. Эталонные модели

Обсудив многоуровневые сети в общих чертах, пора рассмотреть несколько примеров. Мы опишем два важных архитектурных типа — эталонные модели OSI и TCP/IP. Несмотря на то что протоколы, связанные с эталонной моделью OSI, сейчас не используются, сама модель до сих пор весьма актуальна, а свойства ее уровней, которые будут обсуждаться в этом разделе, очень важны. В эталонной модели TCP/IP все наоборот: сама модель сейчас почти не используется, а ее протоколы являются едва ли не самыми распространенными. Исходя из этого, мы обсудим подробности, касающиеся обеих моделей. К тому же иногда приходится больше узнавать из поражений, чем из побед.

1.4.1. Эталонная модель OSI

Эталонная модель OSI (за исключением физической среды) показана на рис. 1.17. Эта модель основана на разработке Международной организации по стандартизации (International Organization for Standardization, ISO) и является первым шагом к международной стандартизации протоколов, используемых на различных уровнях (Day и Zimmerman, 1983). Затем она была пересмотрена в 1995 году (Day, 1995). Называется эта структура эталонной моделью взаимодействия открытых систем ISO (ISO OSI (Open System Interco

Модель OSI имеет семь уровней. Появление именно такой структуры было обусловлено следующими соображениями.

1.    Уровень должен создаваться по мере необходимости отдельного уровня абстракции.

2.    Каждый уровень должен выполнять строго определенную функцию.

3.    Выбор функций для каждого уровня должен осуществляться с учетом создания стандартизированных международных протоколов.

4.    Границы между уровнями должны выбираться так, чтобы поток данных между интерфейсами был минимальным.

5.    Количество уровней должно быть достаточно большим, чтобы различные функции не объединялись в одном уровне без необходимости, но не слишком высоким, чтобы архитектура не становилась громоздкой.

Ниже мы обсудим каждый уровень модели, начиная с самого нижнего. Обратите внимание: модель OSI не является сетевой архитектурой, поскольку она не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каждый уровень. Тем не менее ISO также разработала стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт. Эта модель (частично) широко используется, хотя связанные с ней протоколы долго были забыты.

Рис. 1.17. Эталонная модель OSI

Физический уровень

Физический уровень занимается реальной передачей необработанных битов по каналу связи. При разработке сети необходимо убедиться, что когда одна сторона передает единицу, то принимающая сторона получает также единицу, а не ноль. Принципиальными вопросами здесь являются следующие: какое напряжение должно использоваться для отображения единицы, а какое для нуля; сколько микросекунд длится бит; может ли передача производиться одновременно в двух направлениях; как устанавливается начальная связь и как она прекращается, когда обе стороны закончили свои задачи; из какого количества проводов должен состоять кабель и какова функция каждого провода. Вопросы разработки в основном связаны с механическими, электрическими и процедурными интерфейсами, а также с физическим носителем, лежащим ниже физического уровня.





Уровень передачи данных

Основная задача уровня передачи данных — быть способным передавать «сырые» данные физического уровня по надежной линии связи, свободной от необнаруженных ошибок, и маскировать реальные ошибки, так что сетевой уровень их не видит. Эта задача вы -полняется при помощи разбиения входных данных на кадры, обычный размер которых колеблется от нескольких сот до нескольких тысяч байт. Кадры данных передаются последовательно с обработкой кадров подтверждения, отсылаемых обратно получателем.

Еще одна проблема, возникающая на уровне передачи данных (а также и на большей части более высоких уровней), — как не допустить ситуации, когда быстрый передатчик заваливает приемник данными. Может быть предусмотрен некий механизм регуляции, который информировал бы передатчик о наличии свободного места в буфере приемника на текущий момент.

В широковещательных сетях существует еще одна проблема уровня передачи данных: как управлять доступом к совместно используемому каналу. Эта проблема разрешается введением специального дополнительного подуровня уровня передачи данных — подуровня доступа к носителю.

Сетевой уровень

Сетевой уровень занимается управлением операциями подсети. Важнейшим моментом здесь является определение маршрутов пересылки пакетов от источника к пункту назначения. Маршруты могут быть жестко заданы в виде таблиц и редко меняться либо, что бывает чаще, автоматически изменяться, чтобы избегать отказавших компонентов. Кроме того, они могут задаваться в начале каждого соединения, например, терминальной сессии, такого как подключения к удаленной машине. Наконец, они могут быть в высокой степени динамическими, то есть вычисляемыми заново для каждого пакета с учетом текущей загруженности сети.

Если в подсети одновременно присутствует слишком большое количество пакетов, то они могут закрыть дорогу друг другу, образуя заторы в узких местах. Недопущение подобной закупорки также является задачей сетевого уровня в соединении с более высокими уровнями, которые адаптируют загрузку. В более общем смысле, сетевой уровень занимается предоставлением определенного уровня сервиса (это касается задержек, времени передачи, вопросов синхронизации).

При путешествии пакета из одной сети в другую также может возникнуть ряд проблем. Так, способ адресации, применяемый в одной сети, может отличаться от принятого в другой. Сеть может вообще отказаться принимать пакеты из-за того, что они слишком большого размера. Также могут различаться протоколы и т. д. Именно сетевой уровень должен разрешать все эти проблемы, позволяя объединять разнородные сети.

В широковещательных сетях проблема маршрутизации очень проста, поэтому в них сетевой уровень очень примитивный или вообще отсутствует.

Транспортный уровень

Основная функция транспортного уровня — принять данные от сеансового уровня, разбить их при необходимости на небольшие части, передать их сетевому уровню и гарантировать, что эти части в правильном виде прибудут по назначению. Кроме того, все это должно быть сделано эффективно и таким образом, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии с течением времени.

Транспортный уровень также определяет тип сервиса, предоставляемого сеансовому уровню и, в конечном счете, пользователям сети. Наиболее популярной разновидностью транспортного соединения является защищенный от ошибок канал между двумя узлами, поставляющий сообщения или байты в том порядке, в каком они были отправлены. Однако транспортный уровень может предоставлять и другие типы сервисов, например пересылку отдельных сообщений без гарантии соблюдения порядка их доставки или одновременную отправку сообщения различным адресатам по принципу широковещания. Тип сервиса определяется при установке соединения. (Строго говоря, полностью защищенный от ошибок канал создать совершенно невозможно. Говорят лишь о таком канале, уровень ошибок в котором достаточно мал, чтобы им можно было пренебречь на практике.)

Транспортный уровень является настоящим сквозным уровнем, то есть доставляющим сообщения от источника адресату. Другими словами, программа на машине-источнике поддерживает связь с подобной программой на другой машине при помощи заголовков сообщений и управляющих сообщений. На более низких уровнях для поддержки этого соединения устанавливаются соединения между всеми соседними машинами, через которые проходит маршрут сообщений. Различие между уровнями с 1-го по 3-й, действующих по принципу звеньев цепи, и уровнями с 4-го по 7-й, являющимися сквозными, проиллюстрировано на рис. 1.17.