Добавить в цитаты Настройки чтения

Страница 24 из 25



В том, как все это делалось, было что-то до такой степени человеческое, что мне стало не по себе: я видел AI, у которого была цель и который достиг совершенства на пути к ней, значительно обогнав своих создателей. В предыдущей главе мы определили интеллект просто как способность достигать сложных целей, и в этом смысле AI DeepMind становился все более умным в моих глазах (хотя бы и в очень узком смысле освоения премудростей единственной игры). В первой главе мы уже встречались с тем, что специалисты по информатике называют интеллектуальными агентами: это сущности, которые собирают информацию об окружающей среде от датчиков, а затем обрабатывают эту информацию, чтобы решить, как действовать в этой среде. Хотя игровой искусственный интеллект DeepMind жил в чрезвычайно простом виртуальном мире, состоящем из кирпичей, шариков и платформы, я не мог отрицать, что этот агент был разумным.

DeepMind вскоре опубликовала и свой метод, и использованный код, объяснив, что в основе лежала очень простая, но действенная идея, получившая название глубокого обучения с подкреплением{9}. Обучение с подкреплением – классический метод машинного обучения, основанный на бихевиористской психологии, которая утверждает, что достижение положительного результата подкрепляет ваше стремление повторить выполненное действие, и наоборот. Словно собака, которая учится выполнять команды хозяина, опираясь на его поддержку и в надежде на угощение, искусственный интеллект DeepMind учился двигать платформу, ловя шарик, в надежде на увеличение счета. DeepMind объединила эту идею с глубоким обучением: там научили глубокую нейронную сеть, описанную в предыдущей главе, предсказывать, сколько очков в среднем заработает АI, нажимая ту или иную из доступных клавиш, и, исходя из этого и учитывая текущее состояние игры, он выбирал ту клавишу, которую нейронная сеть оценивала как наиболее перспективную.

Рассказывая о том, что поддерживает мою положительную самооценку, я включил в этот список и способность решать разнообразные не решенные до меня задачи. Интеллект, ограниченный лишь способностью научиться хорошо играть в Breakout и больше ни на что не годный, следует считать чрезвычайно узким. Для меня вся важность прорыва DeepMind заключалась в том, что глубокое обучение с подкреплением – исключительно универсальный метод. Нет сомнений, что они практиковали его же, когда их AI учился играть в сорок девять различных игр Atari и достиг уровня, при котором стал уверенно обыгрывать любых человеческих соперников в двадцать девять из них, от Pong до Boxing, Video Pinball и Space Invaders.

Не надо было долго ждать момента, когда эту идею начнут использовать для обучения AI более современным играм – с трехмерными, а не двухмерными мирами. Вскоре конкурент компании DeepMind, базирующийся в Сан-Франциско OpenAI, выпустил платформу под названием Universe, где DeepMind AI и другие интеллектуальные агенты могли совершенствоваться во взаимодействии с компьютером так же, как если бы это была игра, – орудуя мышкой, набирая что угодно на клавиатуре, открывая любое программное обеспечение, например запуская веб-браузер и роясь в интернете.

Охватывая взглядом будущее углубленного обучения с подкреплением, трудно предсказать, к чему оно может привести. Возможности метода явно не ограничиваются виртуальным миром компьютерных игр, поскольку, если вы робот, сама жизнь может рассматриваться как игра. Стюарт Рассел рассказывал мне о своем первом настоящем HS-моменте, когда он наблюдал, как его робот Big Dog поднимается по заснеженному лесному склону, изящно решая проблему координации движений конечностей, которую он сам не мог решить в течение многих лет{10}. Для прохождения этого эпохального этапа в 2008 году потребовались усилия огромного количества первоклассных программистов. После описанного прорыва DeepMind не осталось причин, по которым робот не может рано или поздно воспользоваться каким-нибудь вариантом глубокого обучения с подкреплением, чтобы самостоятельно научиться ходить, без помощи людей-программистов: все, что для этого необходимо, – это система, начисляющая ему очки при достижении успеха. Роботы в реальном мире также без помощи людей-программистов могут научиться плавать, летать, играть в настольный теннис, драться и делать все остальное из почти бесконечного списка других двигательных задач. Для ускорения процесса и снижения риска где-нибудь застрять или повредить себя в процессе обучения прохождение его начальных этапов будет, вероятно, осуществляться в виртуальной реальности.

Еще одним поворотным моментом для меня стала победа созданного DeepMind искусственного интеллекта AlphaGo в матче из пяти партий в го против Ли Седоля, который на начало XXI века считался лучшим игроком в го в мире.

Тогда все ждали, что людей вот-вот лишат звания лучших игроков в го, как это случилось с шахматами десятилетиями раньше. И только настоящие знатоки го предсказывали, что на это потребуется еще одно десятилетие, и поэтому победа AlphaGo стала поворотным моментом для них так же, как и для меня. Ник Бострём и Рэй Курцвейл оба подчеркнули, что этот прорыв AI было очень трудно предвидеть, о чем свидетельствуют, в частности, интервью самого Ли Седоля до и после проигрыша в первых трех играх:

Октябрь 2015: “Оценивая нынешний уровень машины… я думаю, что выиграю почти все партии”.

Февраль 2016 года: “Я слышал, что Google DeepMind AI стал на удивление силен и быстро учится, но я убежден, что смогу выиграть хотя бы в этот раз”.

9 марта 2016 года: “Я был очень удивлен, так как совсем не ожидал, что могу проиграть”.

10 марта 2016 года: “У меня нет слов… Я просто в шоке. Должен признать… что третья игра будет для меня нелегкой”.



12 марта 2016 года: “Я чувствовал свое бессилие”.

В течение года после победы над Ли Седолем улучшенный вариант AlphaGo обыграл двадцать лучших игроков в го в мире, не проиграв ни одной партии.

Почему все это воспринималось мной так лично? Я признавался выше, что считаю интуицию и способность к творчеству основными своими человеческими качествами, и, как я сейчас понимаю, в тот момент я почувствовал, что AlphaGo обладает обоими.

Играющие в го по очереди ставят черные и белые камни на доске 19 на 19 (см. рис. 3.2). Возможных позиций в го больше, чем атомов в нашей Вселенной, а это означает, что просчитать все интересные последствия каждого хода – дело безнадежное. Поэтому игроки в значительной степени полагаются на подсознательную интуицию, которая дополняет их сознательные рассуждения в оценке сильных и слабых сторон той или иной позиции, и у экспертов эта интуиция развивается в почти сверхъестественное чувство. Как мы видели в предыдущей главе, в результате глубокого обучения иногда возникает нечто напоминающее интуицию: глубокая нейронная сеть может определить, что на картинке изображена кошка, не имея возможности объяснить почему. Поэтому команда DeepMind поставила на идею, что глубокое обучение может распознавать не только кошек, но и сильные позиции в го. Главное, к чему они стремились, создавая AlphaGo, – было поженить интуицию, присущую глубокому обучению, с логической силой классического GOFAI[16], каков он был до революции глубокого обучения. Они взяли обширную базу данных, где было много позиций го как из игр, сыгранных людьми, так и из игр, сыгранных AlphaGo с клоном самого себя, и тренировали глубокую нейронную сеть предсказывать для каждой позиции вероятность итоговой победы белых. Кроме того, они натренировали отдельную сеть предсказывать вероятные следующие ходы. Затем они объединили эти две сети, пользуясь “старыми добрыми методами” для быстрого просмотра сокращенного списка наиболее вероятных будущих позиций, чтобы определить следующий ход, для которого следующая позиция окажется самой сильной.

9

См. статью, в которой описывается искусственный интеллект DeepMind, совершенствующийся в играх на платформе Atari: http://tinyurl.com/ataripaper

10

Робот Биг Дог в действии: https://www.youtube.com/watch?v=W1czBcnX1Ww

16

Широко используемая аббревиатура от Good Old-Fashioned Artificial Intelligence, что означает “старый добрый искусственный интеллект”. – Прим. перев.