Добавить в цитаты Настройки чтения

Страница 3 из 9



Прямо как в издательствах. Это ведь прикольно. Ты пишешь книгу, а ее вычитывает редактор, который не понимает, что это такое.

Однажды мне рассказали историю о том, как один высокопоставленный чиновник участвовал в реализации законопроекта в области платежей, но сам при этом ни разу в жизни не сделал ни одного банковского перевода. С Big Data так же.

Лет десять назад термин Big Data воспринимался исключительно как инфраструктурный – под ним понимался специальный класс баз данных, которые позволяли быстро обрабатывать большие объемы информации. То есть, Big Data называлась просто категория железок (серверов), которые умели выполнять определенные вычисления.

Зачем они были нужны? Затем, что обычные железки не умели работать с большим количеством записей. Им было сложно. Памяти не хватало, процессоры грелись, пыхтели бедняги, а скорость расчетов оставляла желать лучшего. Железяки или сервера категории Big Data позволяли решить эту проблему. Потом придумали, что дело вовсе не в железяках, и что можно создавать программное обеспечение («софт»), которое будет работать на самых обычных настольных компьютерах, объединенных в единые узлы. Такие конструкции могли работать параллельно над конкретной задачей из области обработки данных. По-научному их называли «программными комплексами» и «кластерами».

Аудиофайлы, изображения, сложные и слабоструктурированные файлики в то время мало обрабатывались. Существовало сильное ограничение по их исследованию. Для них также требовалось специальное программное обеспечение, а у обычных баз данных не было возможности быстро провести анализ.

Технологии очень быстро эволюционировали. В какой-то момент на смену традиционному понятию Big Data пришел еще один новый термин – Smart Data. Он означал, что «Умные данные» – это сигнал, а «Большие данные» – шум. Таким образом появилась парадигма, разделяющая методы анализа: исследования «шумов» и выявления «сигналов».

За какие-то двадцать лет мир тряхануло так, что он перешел от рынка, где нельзя было купить данные интернет-трафика со «следами», оставленными пользователями, к рынку, где любые данные можно достать в любой момент.

И все бы ничего, но мир перевернулся с ног на голову. Данных стало так много, что их внезапно начали регулировать. Беспощадно и беспристрастно.

Одним из первых пострадал банковский сектор. Все процессы и продукты пришлось пересматривать, потому что теперь даже для кредитного решения банк не может купить данные у кредитного бюро, чтобы проверить потенциального заемщика без его согласия.

В 2018 году появилось регулирование GDPR в Европе. Оно стало настолько жестким, что банки вынуждены были остановить привычные процессы привлечения клиентов в Интернете.

Конечно, если смотреть на все со стороны, то трансформация, которая произошла, – колоссальна. Только представьте, раньше данными занимались где-то внутри IT, в специальных операционных хранилищах (еще они называются ODS), дешево и сердито эти данные сваливались в одну кучу из разных источников. Но теперь мир перешел на новую стадию, данные – это новая нефть, из данных начали строить большой бизнес.

Новые технологии неизбежно приведут человечество к изменению мышления. Об этом уже писали эксперты[3], анализирующие влияние изучения другого языка на мышление человека. Новые технологии – это еще и переход к новой терминологии, который повлечет за собой новую форму организации взаимодействия потребителей и компаний. А она еще не выработана. Это значит, что данные как актив еще не имеют своей утвержденной и принятой формы по ведению бизнеса.

Поэтому теперь термин Big Data, скорее, отражает новую модель зрелости бизнеса, общества и государства, он больше не является просто олицетворением технологий хранения данных. Сегодня Big Data подразумевает, что пользователь понимает, как быстро и легально обработать информацию, и как ее структурировать таким образом, чтобы результаты этой работы были понятны окружающим.

Постинформационное общество[4]

Взрывной рост технологий использования данных приблизил человечество к новой модели своей работы – постинформационному обществу.

Звучит слишком заумно? Вообще префикс «пост» уже много где используется: постистория, постмодернизм, постиндустриальное общество и так далее.

Смысл постинформационного общества в том, что полезные знания среди разнообразной информации теперь могут находить алгоритмы, а не люди, которые их спроектировали.

Ну, то есть, учась в школе, ребенок может решать домашнюю работу вместе с алгоритмами, а не с родителями.

А еще с алгоритмами можно анализировать диагнозы множества пациентов или симптомов одновременно, не полагаясь на человеческую экспертизу.



Это реально?

Ага. Google со своим умным «движком» TensorFlow или Яндекс с CatBoost сделали возможным создание уникальных сервисов с использованием данных в домашних условиях (без каких-либо специальных лабораторий).

И чем больше мы используем алгоритмы, тем больше они учатся. Это можно гордо назвать демократизацией – когда всем понемногу достается кусочек счастья.

Демократизация технологий запустила новые процессы по унификации роли человека в процессах обработки, управления данными и развития искусственного интеллекта. Ручной труд стал больше не нужен. Всякие сверки и контроли – работа, которую теперь можно поручать алгоритмам, и они, в отличие от человека, умеют справляться с ней без ошибок.

Даже последний рубеж, которые машины взять никак не могли – тоже покорился. За несколько лет алгоритмы смогли освоить решение ранее сложных творческих и коллаборативных задач. Причем, этот рывок невозможно было спрогнозировать еще пять лет назад.

Такие системы как Alexa, Siri, Алиса и другие, ускоренными темпами захватывают рынок персональных ассистентов.

В 2015 году эксперты даже в своих самых смелых ожиданиях не могли сойтись в том, что алгоритмы смогут пройти этот рубеж всего лишь через год.

Сегодня есть ощущение, что близится еще один большой рывок, и он может произойти в ближайшие несколько лет.

По одной из гипотез им станет трансформация работы с данными для производств. Тогда собираемая информация будет использоваться с целью анализа и выявления аномалий операционного цикла производства, упрощая управление конвейером, будь это надой молока с установленными датчиками на коровах или завод по производству металлической продукции. Я говорю о едином управлении жизненным циклом продукта или услуги, например – локомотива. Компании взаправду разрабатывают единую концепцию жизненного цикла локомотивов и цифровизации депо. Это уже происходит в России.

Создание подобных центров управления предприятиями сегодня не имеет технологических барьеров, проблема исключительно в кооперации участников. Решив ее, мир откроет невообразимую возможность создания адаптивной экономики, когда плановые значения заменяются на стандартные нормы производства, которые высчитывают алгоритмы в зависимости от множества факторов.

Но большинство людей все еще мыслит устаревшими категориями.

Для людей, проработавших много лет на производствах, все кажется достаточно понятным и простым. Сначала рисуешь и проектируешь с инженерами деталь, потом готовишь документацию, где прописываешь, как эту деталь обслуживать, потом производишь и, наконец, обслуживаешь.

Казалось бы, все цели ясны, все пути определены – вперед, товарищи!

А на деле все сложнее. Упомянутый выше локомотив может быть старой развалиной без документации. И вот тут людям приходится креативить. Иными словами, инженеры пытаются решить проблему на месте, прямо в депо. Таких примеров много. Что это означает? Только то, что привычного конвейера, который придумал в свое время Генри Форд, больше не существует. Признать это сложно.

3

Горелов И. Н., Седов К. Ф. Основы психолингвистики. М., 2001. С. 105–106. Тер-Минасова С. Г. Язык и межкультурная коммуникация. М., 2000. С. 29–30.

4

Горелов И. Н., Седов К. Ф. Основы психолингвистики. М., 2001. С. 105–106. Тер-Минасова С. Г. Язык и межкультурная коммуникация. М., 2000. С. 29–30.