Добавить в цитаты Настройки чтения

Страница 7 из 9

Пять платоновых тел

• Тетраэдр образован четырьмя правильными треугольниками.

• Куб (гексаэдр) образован шестью квадратами.

• Октаэдр образован восемью правильными треугольниками.

• Додекаэдр образован 12 правильными пятиугольниками.

• Икосаэдр образован 20 правильными треугольниками.

Их связывали с четырьмя стихиями Античности: землей, воздухом, огнем и водой – и с пятым элементом – квинтэссенцией.

Во времена Евклида и позже, почти 2000 лет, математикам такое не могло и в голову прийти. Практически все относились к аксиомам как к самоочевидным истинам, чью незыблемость никто не посмел бы оспорить. Евклид недаром приложил все свои таланты, чтобы сделать аксиомы именно такими, – и почти преуспел. Однако одна – аксиома параллельности – оказалась особенно сложной и не такой уж очевидной. Многие ученые пытались вывести ее из более простых общих понятий. Позже мы увидим, к каким поразительным открытиям привели эти попытки.

Опираясь на эти простые утверждения, «Начала» обеспечивали доказательства всё более сложных геометрических теорем. Например, в книге I, теореме 5 доказывается, что углы у основания равнобедренного треугольника (у которого две стороны одинаковой длины) равны. Эта теорема была известна целому поколению викторианских школьников как pons asinorum, или «мост ослов»: чертеж, используемый в доказательстве Евклида, напоминал мост. Вдобавок это был первый серьезный камень преткновения для школяров, которые пытались зазубрить теорему, а не понять ее. В книге I, теореме 32 доказано, что сумма углов треугольника на плоскости равна 180°. В книге I, теореме 47 сформулирована теорема Пифагора.

Евклид выводил каждую свою теорему из уже доказанных теорем и разных аксиом. Он выстроил башню логики, которая тянулась всё выше, опираясь на фундамент из аксиом и используя логические выводы в качестве строительного раствора, скреплявшего кирпичи.

Сегодня нас уже не до конца удовлетворяет логика Евклида, потому что в ней есть множество прорех. Евклид слишком многие вещи принимает как данность, в наше время его список аксиом не считается полным. Например, кажется очевидным, что если линия проходит через какую-либо точку внутри круга, то она должна где-то пересекать круг, если продлить ее до нужной длины. Да, это очевидно, если вы нарисуете чертеж, но есть примеры, показывающие, что это вовсе не следует из аксиом Евклида. Евклид был выдающимся ученым, но слишком убежденным в том, что свойства, явно очевидные на чертежах, не нуждаются ни в доказательстве, ни в аксиоматике.

Всё гораздо серьезнее, чем кажется на первый взгляд. Есть немало известных примеров ошибочных суждений, ставших следствием мелких ошибок на изображении. Одно из них – «доказательство», что всякий треугольник имеет две равные стороны.

Евклид известен благодаря своему труду по геометрии «Начала» – выдающемуся и основополагающему тексту в преподавании математики на протяжении 2000 лет.

О жизни Евклида известно очень мало. Он преподавал в Александрии. Примерно в 45 г. до н. э. греческий философ Прокл писал: «Евклид ‹…› жил во времена Птолемея Первого ‹…› потому что и Архимед, живший при Птолемее Первом, упоминает о Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели “Начала”; а тот ответил, что нет царского пути к геометрии. Значит, Евклид был старше платоновского кружка, но моложе Архимеда и Эратосфена ‹…› он был поклонником Платона, исповедовал его философию и в знак этого в своих “Началах” назвал правильные многогранники платоновыми телами, составляющими основу Вселенной».





Золотое сечение

Книга V «Начал» уводит нас в новом и неизведанном направлении от книг с первой по четвертую. Она непохожа на традиционную геометрию и, по сути, кажется бессмысленным набором слов. Как, например, понимать утверждение: «Если одни величины равно кратны по отдельности другим величинам, то и все первые совместно кратны всем вторым» (предложение 1 книги V)?

И дело не в изложении (которое я упростил). Доказательство ясно показывает нам, что имел в виду Евклид. Английский математик XIX в. Август де Морган изложил это понятным языком в своей книге по геометрии: «Десять футов десять дюймов в десять раз больше, чем один фут и один дюйм».

Чего же добивался Евклид? Пытался придать банальности вид теоремы? Или загадочной глупости? Вовсе нет. Для нас это темная материя, но она подводит к самой важной части «Начал» – общей теории отношений, построенной Евдоксом Книдским. Современные математики предпочитают работать с числами. Нам это привычнее, поэтому я часто буду переводить идеи древних греков на этот язык.

Евклид не избежал трудностей при работе с иррациональными числами. Кульминацией «Начал» – и, возможно, их главной темой – стало доказательство существования пяти правильных многогранников: тетраэдра, куба (гексаэдра), октаэдра, додекаэдра и икосаэдра. Евклид доказывает два допущения: больше не существует других правильных многогранников; эти пять действительно существуют: их можно построить геометрически, и их грани совпадают совершенно точно.

Два правильных многогранника, додекаэдр и икосаэдр, включают пятиугольники: у додекаэдра грани имеют форму пятиугольников, а каждые пять граней икосаэдра, собранные вокруг общего угла, образуют пятиугольник. Правильные пятиугольники связаны с тем, что Евклид называет «крайним и средним отношением». На отрезке АВ точка С располагается так, что отношение AB: АС равно отношению AC: BC. Меньшая часть отрезка относится к большей, как большая ко всему отрезку. Если вы нарисуете пятиугольник и впишете в него пятиконечную звезду, стороны последней будут относиться к сторонам пятиугольника точно так же.

В наши дни это отношение известно как золотое сечение. Оно равно (1 + √5) / 2, и это иррациональное число. Оно приблизительно равно 1,618. Древние греки смогли доказать, что оно иррационально, с помощью геометрических свойств пятиугольника. Значит, и Евклид, и его предшественники отдавали себе отчет в том, что для полного понимания свойств додекаэдра и икосаэдра им придется иметь дело с иррациональными числами.

Отношение диагоналей к сторонам образует золотое сечение

Крайнее и среднее отношение (золотое сечение). Длина верхнего отрезка относится к длине среднего так же, как длина среднего – к нижнему

Таков традиционный взгляд, изложенный в «Началах». Дэвид Фоулер в своей книге «Математики Академии Платона» («The Mathematics of Plato’s Academy») утверждает, что это может толковаться иначе. Возможно, главной темой труда Евклида была теория иррациональных чисел, а рассуждения о правильных многогранниках – второстепенное приложение к ней. Действительно, мы можем интерпретировать текст Евклида по-разному, но одна особенность «Начал» говорит в пользу этой альтернативной теории. Основная часть теории чисел не нуждается в классификации правильных многогранников. Зачем же тогда Евклид включил их в свой труд? И только их прямая связь с теорией иррациональных чисел делает понятным такой ход.

Архимед

Величайшим из древних математиков считается Архимед. Он сделал важнейший вклад в геометрию, был первопроходцем в деле приложения математики ко всем явлениям мира и непревзойденным инженером. Но для математиков он будет памятен прежде всего исследованиями формы круга, шара и цилиндра. Для нас они связаны с числом π (пи), приблизительно равным 3,14159. Конечно, греки не работали с π напрямую: они представляли его геометрически, как отношение длины окружности к диаметру.